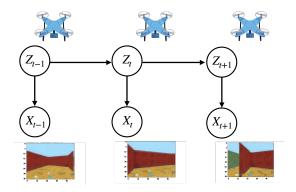
Importance Weighting Approach in Kernel Bayes' Rule

Liyuan Xu ¹ Yutian Chen ² Arnaud Doucet ² Arthur Gretton ¹

¹Gatsby Unit

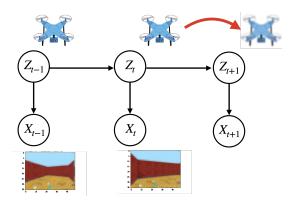
²DeepMind

Drone Localization



Predict drone location Z_t from camera images X_1, \ldots, X_t .

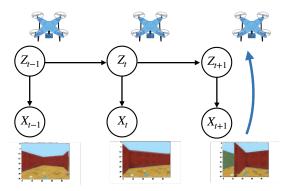
One approach: Bayes' Filter



$$P(Z_{t+1}|X_{1,...,t}) = \int P(Z_{t+1}|Z_t) dP(Z_t|X_{1,...,t})$$

Known as "sum rule".

Bayes' Filter

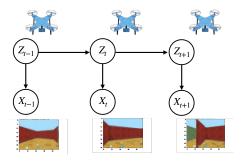


 $P(Z_{t+1}|X_{1,\dots,t+1}) \propto P(X_{t+1}|Z_{t+1})P(Z_{t+1}|X_{1,\dots,t+1})$

Bayesian update of prior $P(Z_{t+1}|X_{1,\dots,t})$ given observation X_{t+1}

• Likelihood function is $P(X_{t+1}|Z_{t+1}) = P(X_t|Z_t)$

Difficulty of Bayes' Filter

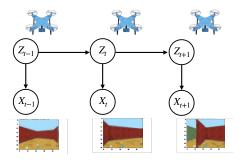


There is no explicit model of $P(Z_{t+1}|Z_t)$ or $P(X_t|Z_t)$. \rightarrow Need to learn them from data $\{X_t, Z_t\}$

■ $P(Z_t|X_{1,...,t})$ is assumed to be in a specific parametric form. → Might cause a bias in estimation.

Desirable to use non-parametric representation of distributions.

Difficulty of Bayes' Filter

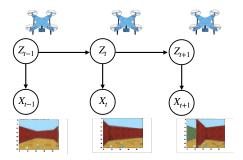


There is no explicit model of $P(Z_{t+1}|Z_t)$ or $P(X_t|Z_t)$. \rightarrow Need to learn them from data $\{X_t, Z_t\}$

• $P(Z_t|X_{1,...,t})$ is assumed to be in a specific parametric form. \rightarrow Might cause a bias in estimation.

Desirable to use non-parametric representation of distributions.

Difficulty of Bayes' Filter



There is no explicit model of $P(Z_{t+1}|Z_t)$ or $P(X_t|Z_t)$. \rightarrow Need to learn them from data $\{X_t, Z_t\}$

• $P(Z_t|X_{1,...,t})$ is assumed to be in a specific parametric form. \rightarrow Might cause a bias in estimation.

Desirable to use non-parametric representation of distributions.

RKHS Embeddings

Define kernel k(x, x') and accompanied feature map $\phi(x)$. $k(x, x') = \langle \phi(x), \phi(x') \rangle, \quad f(x) = \langle f, \phi(x) \rangle$

• Mean embedding μ_P of distribution P is defined as

 $\mu_{\boldsymbol{P}} = \mathbb{E}_{\boldsymbol{P}}\left[\phi(X)\right],$

 \blacksquare It can be generalized to conditional distribution $P_{X|Z}$ $\mu_{P_{X|Z}}(z) = \mathbb{E}_{P}\left[\phi(X)|Z=z\right]$

RKHS Embeddings

Define kernel k(x, x') and accompanied feature map $\phi(x)$.

$$k(x, x') = \left\langle \phi(x), \phi(x') \right\rangle, \quad f(x) = \left\langle f, \phi(x) \right\rangle$$

• Mean embedding μ_P of distribution P is defined as

 $\mu_{\mathbf{P}} = \mathbb{E}_{\mathbf{P}}\left[\phi(X)\right],$

 \blacksquare It can be generalized to conditional distribution $P_{X|Z}$ $\mu_{P_X|Z}(z) = \mathbb{E}_P\left[\phi(X)|Z=z\right]$

RKHS Embeddings

Define kernel k(x, x') and accompanied feature map $\phi(x)$.

$$k(x, x') = \left\langle \phi(x), \phi(x') \right\rangle, \quad f(x) = \left\langle f, \phi(x) \right\rangle$$

• Mean embedding μ_P of distribution P is defined as

 $\mu_{\pmb{P}} = \mathbb{E}_{\pmb{P}}\left[\phi(X)\right],$

It can be generalized to conditional distribution $P_{X|Z}$

$$\mu_{\mathbf{P}_{X|Z}}(z) = \mathbb{E}_{\mathbf{P}}\left[\phi(X)|Z=z\right]$$

Embedding μ_P can uniquely determine the distribution.

• Embeddings can be non-parametrically estimated from $\{X_i, Z_i\}_{i=1}^n$ as

$$\mu_P = \frac{1}{n} \sum_{i=1}^n \phi(x_i), \quad \mu_{P_{X|Z}}(z) = \frac{1}{n} \sum_{i=1}^n w_i(z)\phi(x_i)$$

for some weighting function $w_i(z)$.

• Kernel Bayes' Filter:

Represent distributions $P(Z_t|X_{1,...,t})$ using embeddings

- Embedding μ_P can uniquely determine the distribution.
- Embeddings can be non-parametrically estimated from $\{X_i, Z_i\}_{i=1}^n$ as

$$\mu_P = \frac{1}{n} \sum_{i=1}^n \phi(x_i), \quad \mu_{P_{X|Z}}(z) = \frac{1}{n} \sum_{i=1}^n w_i(z)\phi(x_i)$$

for some weighting function $w_i(z)$.

Kernel Bayes' Filter:

Represent distributions $P(Z_t|X_{1,...,t})$ using embeddings

- Embedding μ_P can uniquely determine the distribution.
- Embeddings can be non-parametrically estimated from $\{X_i, Z_i\}_{i=1}^n$ as

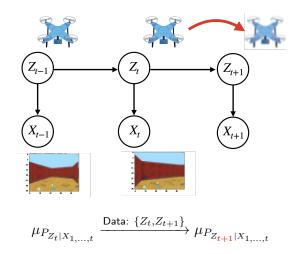
$$\mu_P = \frac{1}{n} \sum_{i=1}^n \phi(x_i), \quad \mu_{P_{X|Z}}(z) = \frac{1}{n} \sum_{i=1}^n w_i(z)\phi(x_i)$$

for some weighting function $w_i(z)$.

Kernel Bayes' Filter:

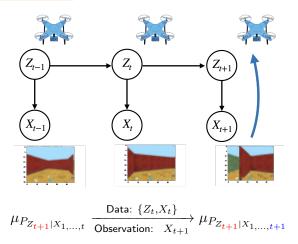
Represent distributions $P(Z_t|X_{1,...,t})$ using embeddings

Kernel Bayes' Filter



• Use kernel sum rule [Song et al. 2011] for $\mu_{P_{Z_{t+1}|X_1,...,X_t}}$.

Kernel Bayes' Filter



Bayesian update given the embedding of the prior μ<sub>P_{Zt+1}|X_{1,...,t}
 This update is called kernel Bayes' rule.
</sub>

9/13

Given

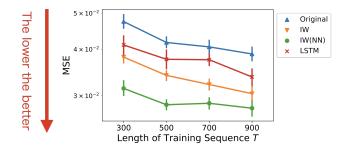
- Training data $\{X_i, Z_i\} \sim P(X|Z)P(Z)$
- Embedding μ_{π} of prior $\pi(Z)$
 - Outputs posterior embedding

$$\mu_Q(x) = \int \phi(z) \frac{P(x|z)\pi(z)}{\int P(x|z)\pi(z)dz} dz$$

Proposed a novel instance of kernel Bayes' rule.

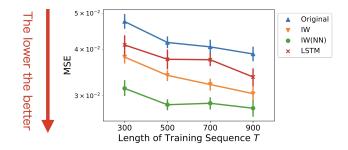
- Based on importance weighting.
- Achieves superior numerical stability to existing work [Fukumizu+ 2013].
- Admits the use of neural network feature in kernel Bayes' rule.

- A drone is rotating in a maze.
- Latent Z_t : True angle of the drone.
- Observation X_t : The image observed at the noisy version of Z_t
- **Task:** Predict Z_t from X_1, \ldots, X_t

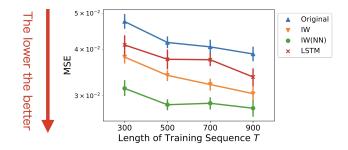


Original: Existing kernel Bayes rule [Fukumizu+ 2013]

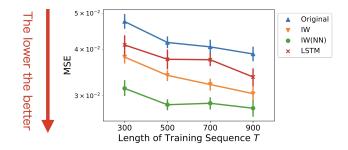
- **LSTM:** Directly regress Z_t from $X_{t-5,...,t}$
- IW: New kernel Bayes' rule with RKHS feature
- IW(NN): New kernel Bayes' rule with adaptive feature



- Original: Existing kernel Bayes rule [Fukumizu+ 2013]
- LSTM: Directly regress Z_t from $X_{t-5,...,t}$
- IW: New kernel Bayes' rule with RKHS feature
- IW(NN): New kernel Bayes' rule with adaptive feature



- Original: Existing kernel Bayes rule [Fukumizu+ 2013]
- **LSTM:** Directly regress Z_t from $X_{t-5,...,t}$
- IW: New kernel Bayes' rule with RKHS feature
- IW(NN): New kernel Bayes' rule with adaptive feature



- Original: Existing kernel Bayes rule [Fukumizu+ 2013]
- **LSTM**: Directly regress Z_t from $X_{t-5,...,t}$
- IW: New kernel Bayes' rule with RKHS feature
- IW(NN): New kernel Bayes' rule with adaptive feature