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Drone Localization

Predict drone location Zt from camera images X1, . . . , Xt.

One approach: Bayes’ Filter
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Bayes’ Filter

P (Zt+1|X1,...,t) =

∫
P (Zt+1|Zt)dP (Zt|X1,...,t)

Known as “sum rule”.

3/13



Bayes’ Filter

P (Zt+1|X1,...,t+1) ∝ P (Xt+1|Zt+1)P (Zt+1|X1,...,t+1)

Bayesian update of prior P (Zt+1|X1,...,t) given observation Xt+1

Likelihood function is P (Xt+1|Zt+1) = P (Xt|Zt)
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Difficulty of Bayes’ Filter

There is no explicit model of P (Zt+1|Zt) or P (Xt|Zt).
→ Need to learn them from data {Xt, Zt}

P (Zt|X1,...,t) is assumed to be in a specific parametric form.

→ Might cause a bias in estimation.

Desirable to use non-parametric representation of distributions.
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RKHS Embeddings

Define kernel k(x, x′) and accompanied feature map φ(x).

k(x, x′) =
〈
φ(x), φ(x′)

〉
, f(x) = 〈f, φ(x)〉

Mean embedding µP of distribution P is defined as

µP = EP [φ(X)] ,

It can be generalized to conditional distribution PX|Z

µPX|Z (z) = EP [φ(X)|Z = z]
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Advantage of RKHS Embeddings

Embedding µP can uniquely determine the distribution.

Embeddings can be non-parametrically estimated from {Xi, Zi}ni=1 as

µP =
1

n

n∑
i=1

φ(xi), µPX|Z (z) =
1

n

n∑
i=1

wi(z)φ(xi)

for some weighting function wi(z).

Kernel Bayes’ Filter:

Represent distributions P (Zt|X1,...,t) using embeddings
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Kernel Bayes’ Filter

µPZt|X1,...,t

Data: {Zt,Zt+1}−−−−−−−−−−→ µPZt+1|X1,...,t

Use kernel sum rule [Song et al. 2011] for µPZt+1|X1,...,Xt
.
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Kernel Bayes’ Filter

µPZt+1|X1,...,t

Data: {Zt,Xt}−−−−−−−−−−−−→
Observation: Xt+1

µPZt+1|X1,...,t+1

Bayesian update given the embedding of the prior µPZt+1|X1,...,t

This update is called kernel Bayes’ rule.
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Kernel Bayes’ Rule [Fukumizu+ 2013]

Given

Training data {Xi, Zi} ∼ P (X|Z)P (Z)
Embedding µπ of prior π(Z)

Outputs posterior embedding

µQ(x) =

∫
φ(z)

P (x|z)π(z)∫
P (x|z)π(z)dz

dz
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Contribution

Proposed a novel instance of kernel Bayes’ rule.

Based on importance weighting.

Achieves superior numerical stability to existing work [Fukumizu+ 2013].

Admits the use of neural network feature in kernel Bayes’ rule.
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DeepMind Lab Experiment

A drone is rotating in a maze.

Latent Zt: True angle of the drone.

Observation Xt: The image observed at the noisy version of Zt

Task: Predict Zt from X1, . . . , Xt
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DeepMind Lab Experiment

Original: Existing kernel Bayes rule [Fukumizu+ 2013]

LSTM: Directly regress Zt from Xt−5,...,t

IW: New kernel Bayes’ rule with RKHS feature

IW(NN): New kernel Bayes’ rule with adaptive feature
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