Importance Weighting Approach in Kernel Bayes' Rule

Liyuan Xu ! Yutian Chen 2
Arnaud Doucet 2 Arthur Gretton 1

!Gatsby Unit

2DeepMind

1/13



Drone Localization

m Predict drone location Z; from camera images X1,..., X;.

m One approach: Bayes' Filter
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Z_y > m »(Zis1

m Known as “sum rule”.
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P(Zi 1| X1, 141) X P(Xe41]Zi41) P(Zea| X0, 41)

m Bayesian update of prior P(Z;1|X1,. +) given observation X,
m Likelihood function is P(X;41|Z¢41) = P(X¢|Z)
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Difficulty of Bayes' Filter
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m There is no explicit model of P(Z;11|Z:) or P(X¢|Zy).
— Need to learn them from data {X;, Z;}
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Difficulty of Bayes' Filter

oo M MW

m There is no explicit model of P(Z;11|Z:) or P(X¢|Zy).
— Need to learn them from data {X;, Z;}

m P(Zy| Xy, ) is assumed to be in a specific parametric form.
— Might cause a bias in estimation.

m Desirable to use non-parametric representation of distributions.
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RKHS Embeddings

m Define kernel k(z,z’) and accompanied feature map ¢(z).

k(z,a') = (¢(x),¢(a")) . f(z) = (f,¢(x))
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RKHS Embeddings

m Define kernel k(z,z’) and accompanied feature map ¢(z).
k(z,2') = (¢(x),0(z")), f(2)={f ¢(x))
m Mean embedding up of distribution P is defined as

up = Ep [¢(X)] )

m It can be generalized to conditional distribution Py

1py ,(2) =Ep[¢(X)|Z = 2]
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Advantage of RKHS Embeddings

m Embedding pp can uniquely determine the distribution.
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Advantage of RKHS Embeddings

m Embedding pp can uniquely determine the distribution.

m Embeddings can be non-parametrically estimated from {X;, Z;}!' | as
1< 1<
Hp = I Zﬁb(l‘z‘), MPX‘Z(Z) o Zwi(z)¢($i)
i=1 i=1
for some weighting function w;(z).

m Kernel Bayes' Filter:
Represent distributions P(Z;| X1, . +) using embeddings
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Kernel Bayes' Filter
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Kernel Bayes' Filter

Data: {Zt,Xt}

A P,
vvvvv t Observation: X;41 Zep1 X1, 41

m Bayesian update given the embedding of the prior [Py, ,
m This update is called kernel Bayes' rule.
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Kernel Bayes' Rule [Fukumizu+ 2013]

Given
m Training data {X;, Z;} ~ P(X|Z2)P(2)
m Embedding pi, of prior w(Z2)

Outputs posterior embedding

(z]2)7(2)

P
nale) = [ o(2) TP
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Contribution

Proposed a novel instance of kernel Bayes' rule.
m Based on importance weighting.
m Achieves superior numerical stability to existing work [Fukumizu+ 2013].

m Admits the use of neural network feature in kernel Bayes’ rule.
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DeepMind Lab Experiment

theta: 0.0
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m A drone is rotating in a maze.

m Latent Z;: True angle of the drone.

m Observation X;: The image observed at the noisy version of Z;
m Task: Predict Z; from Xq,..., X}
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DeepMind Lab Experiment
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m Original: Existing kernel Bayes rule [Fukumizu+ 2013]
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DeepMind Lab Experiment
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m LSTM: Directly regress Z; from X; 5 ;
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DeepMind Lab Experiment
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m IW: New kernel Bayes' rule with RKHS feature
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DeepMind Lab Experiment
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m IW(NN): New kernel Bayes' rule with adaptive feature
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