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Introduction: Estimating counterfactual outcomes over time 

Problem 
formulation

Given observational dataset of:
- time-varying covariates (e.g., blood pressure)
- static covariates (e.g., age)    
- treatments (e.g., ventilation) 
- (factual2) outcomes (e.g., respiratory frequency) 

we want to estimate counterfactual outcomes 
over time starting from prediction origin for a given 
sequence of treatment interventions

Why this is 
important?

● Counterfactual prediction allows to answer individualized “what if” questions: what will 
happen to the patient, if I apply alternative sequence of treatments, counterfactual1 to a 
standard treatment policy

● Growing opportunity to employ observational data:
○ randomized controlled trials (RCTs) are costly and/or unethical
○ abundance of large-scale observational data, e.g., electronic health records

1 Here, potential outcomes are meant, which correspond to the interventional level of valuation in Pearl’s Hierarchy and the Foundations of Causal Inference
2 Factual outcomes are observed under standard treatment policy
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Introduction: Task complexity – Assumptions – Related methods

● Marginal Structural Models (MSMs) (Robins et al., 2000; Hernan et al., 2001): only linear 
modelling

● Recurrent Marginal Structural Networks (RMSNs) (Lim et al., 2018): several LSTM 
networks for inverse probability of treatment weights (IPTW) and prediction

● Counterfactual Recurrent Network (CRN) (Bica et al., 2020): encoder-decoder LSTMS 
with adversarial learning of treatment invariant representations

● G-Net (Li et al., 2021): G-computation on top of LSTM 

Related 
methods

Why 
estimation is 
hard?

● Counterfactual outcomes are never directly observed in a real world
● Observed history grows with time
● Traditional machine learning is biased in the presence of time-varying confounding1

● Consistency.  If       is a given sequence of treatments for some patient, then 

● Sequential Overlap.  There is always a non-zero probability of receiving/not receiving any 
treatment, conditioning on the previous history:

● Sequential Ignorability. Current treatment is independent of the potential outcome, 
conditioning on the observed history

Identifiability 
assumptions

1 Time-varying confounding stands for a non-randomized treatment assignment, which depends on time-varying covariates, previous treatments and previous outcomes
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Introduction: Research gap – Our contributions

Causal Transformer (CT) is an end-to-end model, first tailoring of transformers to a 
counterfactual prediction task over time:
● CT captures complex, long-range dependencies between time-varying covariates, 

treatments and outcomes
● CT employs a novel counterfactual domain confusion (CDC) loss to address a 

time-varying confounding   
● CT achieves state-of-the-art performance on synthetic, semi-synthetic & real benchmarks 

Our 
contributions

Research 
gap

● Current state-of-the-art methods are built on top of long short-term memory (LSTM), thus 
rendering inferences for complex, long-range dependencies challenging 
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Causal Transformer: Novel architecture

1. Input – observed patient history

2. Output – predicted outcomes under a sequence of interventions
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Causal Transformer: Novel architecture

3. Inputs are 
transformed with a 
stack of 
multi-input blocks

4. Outputs of the last block are averaged 
and form balanced representations

5. Each block is equipped with 
self-attention, cross-attention and 
feed-forward layers
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Causal Transformer: Novel architecture

6. We place treatment classifier network and outcome prediction network on top of balanced representations

7. Both treatment classifier and outcome prediction networks are used for the novel counterfactual domain 
confusion loss (CDC) loss
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Causal Transformer: Counterfactual domain confusion (CDC) loss

● Idea stems from the unsupervised domain adaptation1

● CDC is an adversarial objective, which aims to
(a) make balanced representations         non-predictive of the current 
treatment:
● minimizing cross-entropy of current treatment wrt.
● minimizing cross-entropy between uniform treatment and output of 

treatment classifier network wrt.  
(b) at same time, make them predictive of the outcome wrt.          and
     by minimizing factual MSE

● Adversarial learning is stabilized with exponential moving average (EMA) 
of model weights

1 Tzeng, Eric, et al. "Simultaneous deep transfer across domains and tasks." Proceedings of the IEEE international conference on computer vision (2015)
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Causal Transformer: Theoretical insights

● Previously proposed Gradient reversal1 (CRN, Bica et al., 2020) 
extends in two ways:

○ if badly chosen hyperparameter -> representation may be predictive 
of opposite treatment

○ gradients could vanish, if treatment classifier network learns too 
fast, gradients vanish

● We prove a theorem, similar to (CRN, Bica et al., 2020): finding a 
solution to an adversarial objective of CDC loss renders distributions of 
representations conditional on each treatment equal (= balanced)

● In our case, we minimize a reversed KL-divergence:

where       is a distribution of representation conditional on treatment j

1 Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." International conference on machine learning. PMLR, 2015

CDC loss (our paper) Gradient reversal (CRN, Bica et al., 2020)

Minimizing Minimizing 
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Experiments: Datasets – Baselines – Results

Datasets

● We evaluate CT based on synthetic, (self-designed) semi-synthetic and real-world 
(MIMIC-III) datasets

● Only synthetic and semi-synthetic data have ground-truth counterfactuals; real-world 
evaluation is a proof of concept

● We compared root-mean-squared error (RMSE) of one and multiple-step-ahead predictions

Results

CT achieves superior performance over current baselines for benchmarks with long-range 
dependencies and long prediction horizons, e.g., for semi-synthetic benchmark:  

Baselines 
● Marginal Structural Models (MSMs) (Robins et al., 2000; Hernan et al., 2001)
● Recurrent Marginal Structural Networks (RMSNs) (Lim et al., 2018)
● Counterfactual Recurrent Network (CRN) (Bica et al., 2020)
● G-Net (Li et al., 2021)
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Experiments: Ablation study

Based on synthetic datasets we evaluate different versions of CT with varying:
(a) different components within the subnetworks (positional encodings, attentional dropout)
(b) different losses (CDC vs Gradient reversal vs no balancing, w/ vs w/o EMA of weights)
(c) single-subnetwork variant of CT vs original CT

Results

Ablation 
types

● Combination of end-to-end 
three subnetworks 
architecture and the novel 
CDC is crucial (neither work 
better alone)

● Switching the backbone 
from LSTM to transformer 
and using gradient reversal 
as in (Bica et al., 2020) 
gives worse results
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Source Code: 
github.com/Valentyn1997/

CausalTransformer 
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Conclusion
We proposed a novel, 
state-of-the-art method: the 
Causal Transformer which is 
designed to capture complex, 
long-range patient trajectories. 

It combines a custom 
subnetwork architecture to 
process the input together with a 
new counterfactual domain 
confusion loss for end-to-end 
training.

ArXiv Paper: 
arxiv.org/abs/2204.07258  

https://github.com/Valentyn1997/CausalTransformer
https://github.com/Valentyn1997/CausalTransformer
https://arxiv.org/abs/2204.07258

