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Formalize objective via policy value1

Potential outcomes

Indicator function for treatment decisionsPolicy value
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Off-Policy Learning

Formalize objective via policy value1

Estimate policy value from data2

Standard methods:

DM – direct method

IPS – inverse propensity score

DR – doubly robust method
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Requirements in Clinical Practice

 It should contain a large class of policies

 Mitigate the risk of model misspecification

 Directly related to policies that yield low 

regrets, i.e., the difference between clinical 

outcome across the population of the 

learned policy and the a priori best policy

 Decisions can be explained in 

understandable terms to humans

 Clinical practitioners need to understand 

which treatment is chosen when

 Important for debugging, detecting biases, 

and for patients to gain trust in the 

algorithm

Sufficiently Rich Interpretable



16

Requirements in Clinical Practice

Linear Eligibility Scores
Kernel Methods

Neural Networks
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Idea: Interpretable Policy Class via Hyperboxes

Treat patient

Do not treat 

patient
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Policy Class 𝚷𝑯
𝑴: Why Hyperboxes?
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IOPL Algorithm

MILP Formulation of Off-Policy Learning

IOPL is a highly efficient branch-and-price 

algorithm, i.e., a column generation procedure 

within a branch-and-bound framework

Interpretable Off-Policy Learning

For more details on our algorithm, experiments with 

baselines, more theoretical results, and proofs, see the paper
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