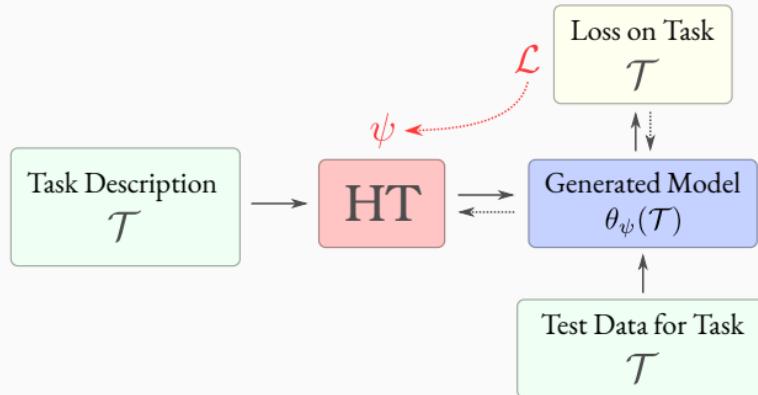


HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning

Andrey Zhmoginov, Mark Sandler, Max Vladymyrov (Google Research)

ICML 2022

- **Core idea:**



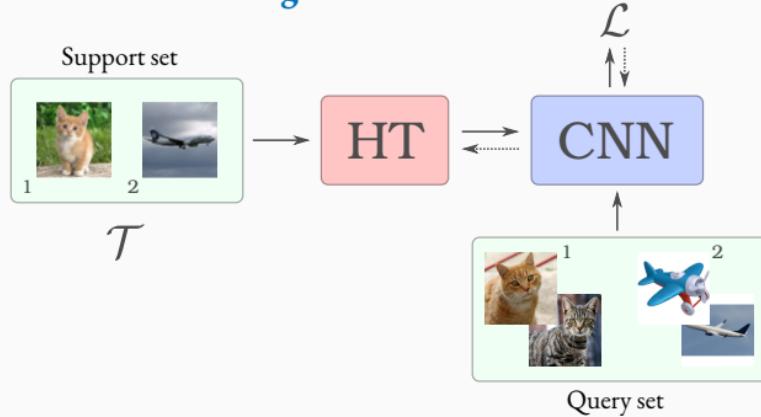
- Finding $\theta_\psi(T)$ solving

$$\operatorname*{argmin}_{\psi} \mathbb{E}_T [\mathcal{L}_T(\theta_\psi(T))]$$

- Related Work:

- D. Ha, A. Dai, Q. V. Le, *HyperNetworks*
- B. Knyazev, et al., *Parameter Prediction for Unseen Deep Architectures*

- **Application to Few-shot Learning**

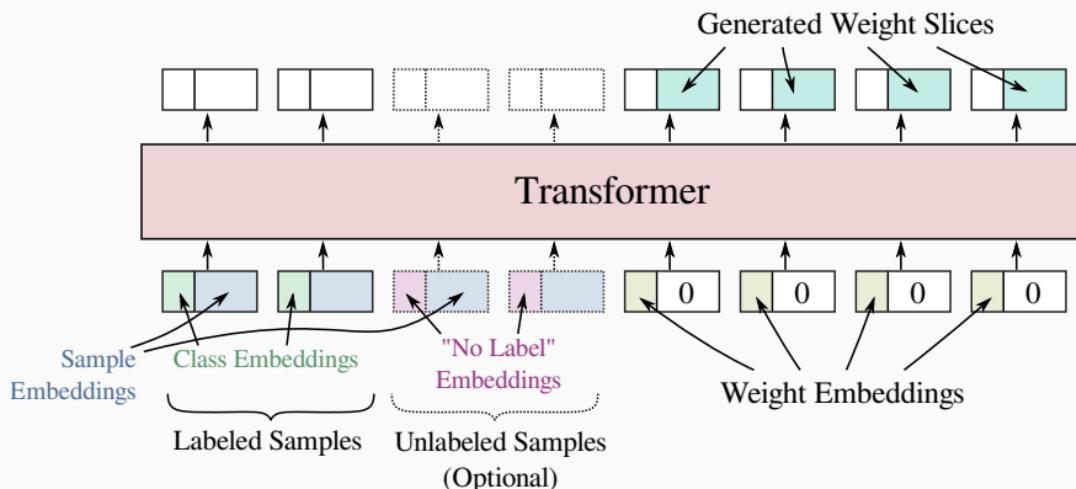


- Decoupling the complexities of the *model generator* (HT) and the *generated model*
 - Run generated models efficiently *if tasks don't change often*
- Versatility of “task descriptions” → supervised and semi-supervised learning

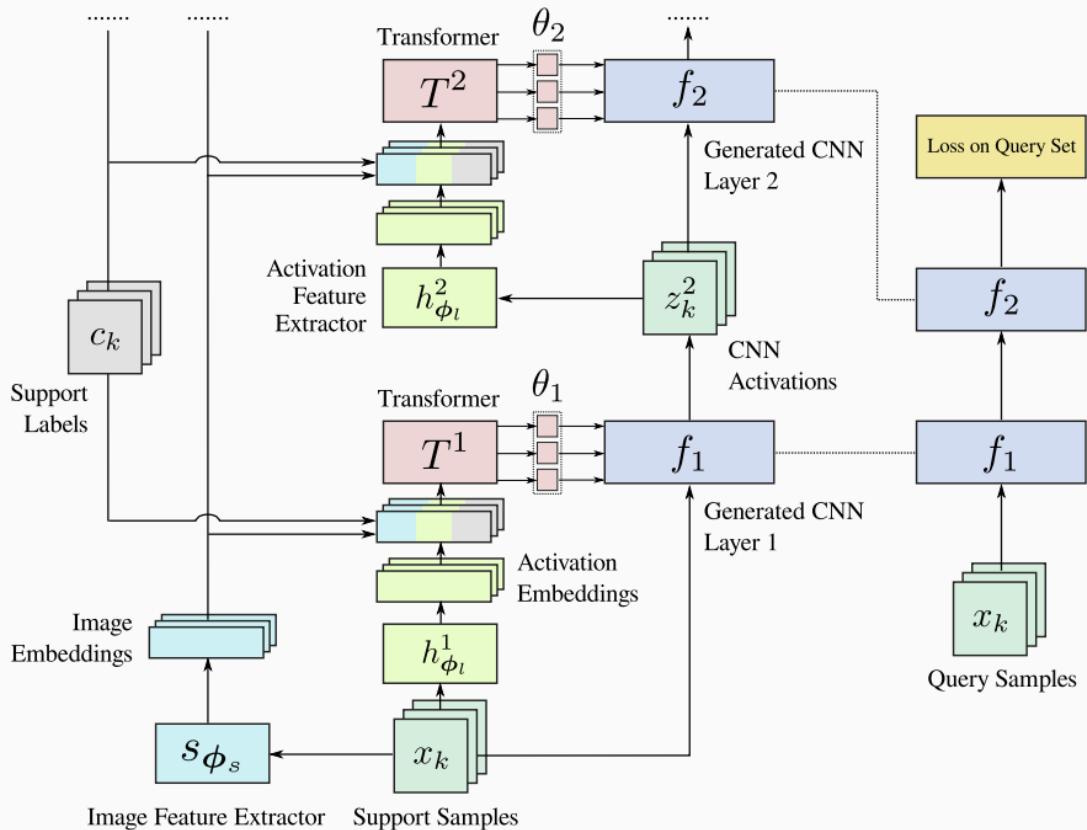
Model Architecture

HyperTransformer Architecture: Generating Each Layer

- Layers are generated **sequentially**
- **For each layer:** sample embeddings → Transformer → weight slices
- **Sample embeddings:** **image** and **activation** embeddings
- **Weight embeddings:** “positional encodings” – which slice to be generated at this token



HyperTransformer Architecture: Complete Model



Experimental Results

Observations

- Trained HT **generalizes** to unseen classes
- On small models, HT outperforms RFS, MAML++
 - Dramatically better training accuracy, better test accuracy
- On large models, HT matches performance of SOTA approaches

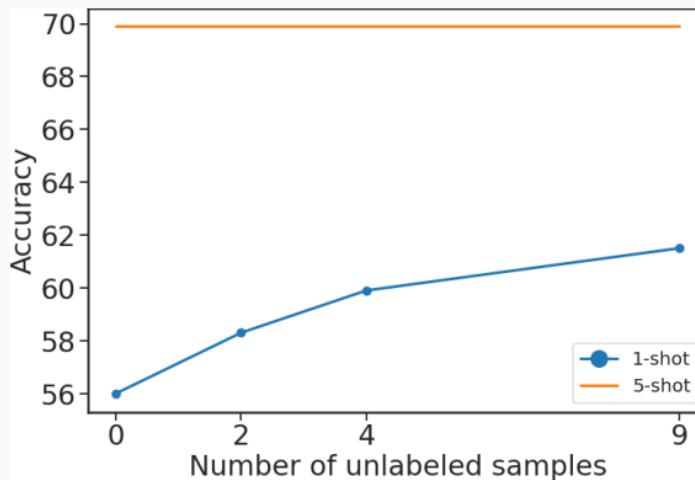
Dataset	Approach	1-shot (channels)					5-shot (channels)				
		8	16	32	48	64	8	16	32	48	64
OMNIGLOT	MAML++	81.4	88.6	95.6	95.8	97.7 [†]	83.2	94.9	98.6	98.8	99.3 [†]
	HT	87.2	93.7	95.5	95.7	96.2	94.7	98.0	98.6	98.8	98.8
MINIIMAGENET	MAML++	43.9	46.6	49.4	52.2 [†]	—	59.0	64.6	66.8	68.3 [†]	—
	RFS	44.0	49.4	51.5	54.2	—	56.1	63.5	67.1	69.1	—
	HT	45.5	50.2	53.8	55.1	—	59.3	64.2	67.1	68.1	—
TIEREDIMAGENET	RFS	44.1	47.7	51.5	54.6	56.8 [*]	55.5	62.0	66.3	69.3	73.2 [*]
	HT	49.1	51.9	54.0	55.0	56.3	61.9	65.8	70.2	71.1	73.9

Observations

- Trained HT **generalizes** to unseen classes
- On small models, HT outperforms RFS, MAML++
 - Dramatically better training accuracy, better test accuracy
- On large models, HT matches performance of SOTA approaches

MINIIMAGENET						TIEREDIMAGENET			
Method	1-S	5-S	Method	1-S	5-S	Method	1-S	5-S	
HT	54.1	68.5	HT-48	55.1	68.1	HT-32	54.0	70.2	
MN	43.6	55.3	SAML	52.2	66.5	MAML-32	51.7	70.3	
IMP	49.2	64.7	GCR	53.2	72.3	HT	56.3	73.9	
PN	49.4	68.2	KTN	54.6	71.2	PN	53.3	72.7	
MELR	55.4	72.3	PARN	55.2	71.6	MELR	56.4	73.2	
TAML	51.8	66.1	PPA	54.5	67.9	RN	54.5	71.3	

- HT can use **complex task descriptions** as its input
- For example, we used **additional unlabeled samples** to better describe a few-shot learning task
- **2-layer Transformers** were necessary for HT to leverage unlabeled samples
- HT learned to use information about unlabeled samples (*tieredImageNet* 5-way)



Thank You!
