Maximum Likelihood Training for Score-Based Diffusion ODEs by High-Order Denoising Score Matching

Cheng Lu, Kaiwen Zheng, Fan Bao, Chongxuan Li, Jianfei Chen, Jun Zhu

Tsinghua University

Score-based Generative Models

SDE and ODE

• ScoreSDE $p_t^{\text{SDE}}(\boldsymbol{x}_t)$: $\mathrm{d}\boldsymbol{x}_t = [\boldsymbol{f}(\boldsymbol{x}_t,t) - g(t)^2 \boldsymbol{s}_{\theta}(\boldsymbol{x}_t,t)] \mathrm{d}t + g(t) \mathrm{d}\bar{\boldsymbol{w}}_t$

• ScoreODE $p_t^{ ext{ODE}}(m{x}_t)$: $rac{\mathrm{d}m{x}_t}{\mathrm{d}t} = m{h}_p(m{x}_t,t) \coloneqq m{f}(m{x}_t,t) - rac{1}{2}g(t)^2m{s}_{ heta}(m{x}_t,t)$

Trained by minimizing weighted combination of score matching objectives:

$$\mathcal{J}_{\text{SM}}(\theta; \lambda(\cdot)) \coloneqq \frac{1}{2} \int_{0}^{T} \lambda(t) \mathbb{E}_{q_{t}(\boldsymbol{x}_{t})} \Big[\|\boldsymbol{s}_{\theta}(\boldsymbol{x}_{t}, t) - \nabla_{\boldsymbol{x}} \log q_{t}(\boldsymbol{x}_{t})\|_{2}^{2} \Big] dt$$

Score matching is to minimizing (upper bound) KL-divergence of SDEs Maximum likelihood training of ScoreSDEs

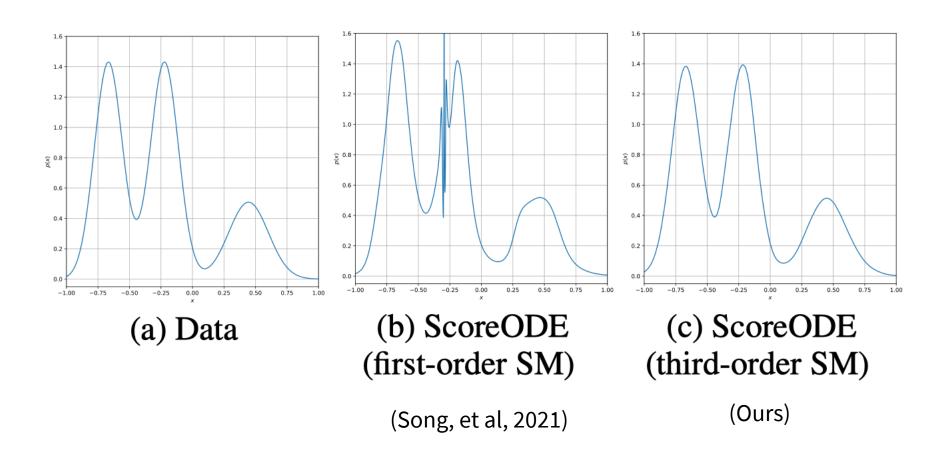
• Score Matching is to maximum likelihood training of **ScoreSDE** (Song, et al, 2021).

$$D_{ ext{KL}}(q_0 \parallel p_0^{ ext{SDE}}) \leq D_{ ext{KL}}(q_T \parallel p_T^{ ext{SDE}}) + \mathcal{J}_{ ext{SM}}(heta; g(\cdot)^2)$$
Very small, $pprox 10^{-5}$ Weighted Score Matching

Problem: Score Matching for ScoreODEs is Unclear

First-order score matching is not enough for ScoreODEs

• An 1-D mixture-of-Gaussian distribution. ScoreODE is "Variance Exploding" type.



Part I.

Relationship between Score Matching and KL Divergence of ScoreODEs

Relationship between Data Distribution and Score-based Models

The three distributions are different

$$q_{t}(\boldsymbol{x}_{t}) \begin{cases} \text{Forward SDE (Eqn.(1))} & \text{Eqn. (3)} \\ \text{Reverse SDE (Eqn.(2))} & \xrightarrow{\text{approximate } \nabla_{\boldsymbol{x}} \log q_{t} \text{ by } \boldsymbol{s}_{\theta}} & \text{\downarrow} \text{(Appendix. B)} \\ \text{Probability flow ODE (Eqn.(5))} & \xrightarrow{\text{Eqn. (6)}} & p_{t}^{\text{ODE}}(\boldsymbol{x}_{t}) \end{cases}$$

$$\text{(a) Relationship between } q_{t}, p_{t}^{\text{SDE}} \text{ and } p_{t}^{\text{ODE}}.$$

Proposition 1. (ours, informal). Assume $f(x_t, t)$ is linear w.r.t. x_t , if $p_t^{SDE} = p_t^{ODE}$, then p_t^{SDE} is a Gaussian distribution for all $t \in [0, T]$.

For SGMs trained on the real data, p_t^{SDE} is always different from p_t^{ODE} (even if the score model achieves the optimum).

Motivation: Exact Likelihood Computation of ScoreODEs

First-order score matching is not enough for ScoreODEs

• **Theorem**. (Ricky T. Q. Chen et al., 2018) "Instantaneous Change of Variables":

$$\log p_0^{\text{ODE}}(\boldsymbol{x}_0) = \log p_T^{\text{ODE}}(\boldsymbol{x}_T) + \int_0^T \nabla_{\boldsymbol{x}} \cdot \left(\boldsymbol{f}(\boldsymbol{x}_t, t) - \frac{1}{2} g(t)^2 \boldsymbol{s}_{\theta}(\boldsymbol{x}_t, t) \right) dt$$

- Score matching can only control $s_{\theta}(x_t, t)$, but **cannot control** $\nabla_x s_{\theta}(x_t, t)$!
- A straightforward way: Directly MLE by the above equation?

No!

Even for evaluation, computing the likelihood of a **single batch** needs **2~3 minutes**.

KL-Divergence of ScoreODEs

The score matching objective is part of KL-divergence

Theorem 1. (ours, informal) The KL-divergence between data distribution and ScoreODE distribution is:

$$D_{\mathrm{KL}}(q_0 \parallel p_0^{ODE}) = D_{\mathrm{KL}}(q_T \parallel p_T^{ODE}) + \mathcal{J}_{ODE}(\theta)$$

$$= \underbrace{D_{\mathrm{KL}}(q_T \parallel p_T^{ODE}) + \mathcal{J}_{SM}(\theta)}_{upper \ bound \ of \ D_{\mathrm{KL}}(q_0 \parallel p_0^{SDE}) \ in \ Eqn. \ (4)}_{Uncontrolled \ Error}$$

where

$$\mathcal{J}_{\text{ODE}}(\theta) \coloneqq \frac{1}{2} \int_0^T g(t)^2 \mathbb{E}_{q_t(\boldsymbol{x}_t)} \Big[(\boldsymbol{s}_{\theta}(\boldsymbol{x}_t, t) - \nabla_{\boldsymbol{x}} \log q_t(\boldsymbol{x}_t))^{\top} \Big(\nabla_{\boldsymbol{x}} \log p_t^{\text{ODE}}(\boldsymbol{x}_t) - \nabla_{\boldsymbol{x}} \log q_t(\boldsymbol{x}_t) \Big) \Big] dt,$$

$$\mathcal{J}_{\text{Diff}}(\theta) \coloneqq \frac{1}{2} \int_0^T g(t)^2 \mathbb{E}_{q_t(\boldsymbol{x}_t)} \Big[(\boldsymbol{s}_{\theta}(\boldsymbol{x}_t, t) - \nabla_{\boldsymbol{x}} \log q_t(\boldsymbol{x}_t))^{\top} \Big(\nabla_{\boldsymbol{x}} \log p_t^{\text{ODE}}(\boldsymbol{x}_t) - \boldsymbol{s}_{\theta}(\boldsymbol{x}_t, t) \Big) \Big] dt.$$

Bounding the KL-Divergence of ScoreODEs

Turn MLE to score matching

By Cauchy–Schwarz inequality:

$$D_{\mathrm{KL}}(q_0 \parallel p_0^{\mathrm{ODE}}) = D_{\mathrm{KL}}(q_T \parallel p_T^{\mathrm{ODE}}) + \frac{1}{2} \int_0^T g(t)^2 \mathbb{E}_{q_t(\boldsymbol{x}_t)} \left[(\boldsymbol{s}_{\theta} - \nabla \log q_t)^\top (\nabla \log p_t^{\mathrm{ODE}} - \nabla \log q_t) \right] dt$$

$$\leq D_{\mathrm{KL}}(q_T \parallel p_T^{\mathrm{ODE}}) + \frac{1}{2} \sqrt{\int_0^T g(t)^2 \mathbb{E}_{q_t(\boldsymbol{x}_t)} \|\boldsymbol{s}_{\theta} - \nabla \log q_t\|_2^2 \mathrm{d}t} \cdot \sqrt{\int_0^T g(t)^2 \mathbb{E}_{q_t(\boldsymbol{x}_t)} \|\nabla \log p_t^{\mathrm{ODE}} - \nabla \log q_t\|_2^2 \mathrm{d}t}$$

(First-Order) Score Matching (Song, et al, 2021)

$$\sqrt{\int_0^T g(t)^2 \mathbb{E}_{q_t(\boldsymbol{x}_t)} \|\nabla \log p_t^{\text{ODE}} - \nabla \log q_t\|_2^2 dt}$$

Fisher Divergence between ODEs (Uncontrolled error)

Bounding Fisher Divergence by High-Order Score Matchings

First-order, second-order and third-order score matchings

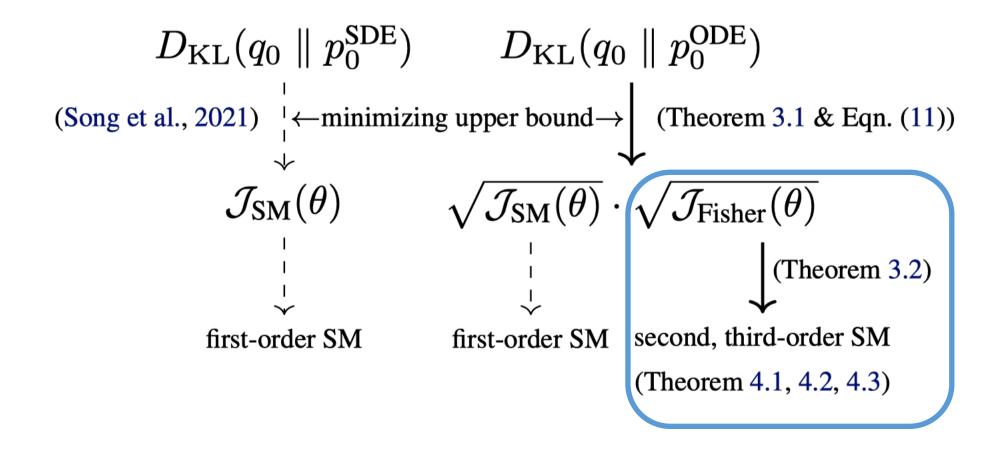
Theorem 2. (ours, informal) Assume $\|\nabla_x \log p_t^{ODE}\|_2 < C$, then the Fisher divergence between q_t and p_t^{ODE} can be bounded by $U(t; \delta_1, \delta_2, \delta_3, C, q)$, where $\delta_1, \delta_2, \delta_3$ are first-order, second-order and third-order score matching errors:

$$\|\boldsymbol{s}_{\theta}(\boldsymbol{x}_{t},t) - \nabla_{\boldsymbol{x}} \log q_{t}(\boldsymbol{x}_{t})\|_{2} \leq \delta_{1},$$

$$\|\nabla_{\boldsymbol{x}}\boldsymbol{s}_{\theta}(\boldsymbol{x}_{t},t) - \nabla_{\boldsymbol{x}}^{2} \log q_{t}(\boldsymbol{x}_{t})\|_{F} \leq \delta_{2},$$

$$\|\nabla_{\boldsymbol{x}} \operatorname{tr}(\nabla_{\boldsymbol{x}}\boldsymbol{s}_{\theta}(\boldsymbol{x}_{t},t)) - \nabla_{\boldsymbol{x}} \operatorname{tr}(\nabla_{\boldsymbol{x}}^{2} \log q_{t}(\boldsymbol{x}_{t}))\|_{2} \leq \delta_{3}$$

Summary: Relationship between Score Matching and KL Divergence ScoreSDE and ScoreODE are different



Part II. Error-Bounded High-Order Denoising Score Matching (DSM)

Second-Order Denoising Score Matching

Second-order score function

• The second-order score function includes the first-order score function:

$$\nabla_{\boldsymbol{x}_{t}}^{2} \log q_{t}(\boldsymbol{x}_{t}) = \mathbb{E}_{q_{t0}(\boldsymbol{x}_{0}|\boldsymbol{x}_{t})} \boxed{ \nabla_{\boldsymbol{x}_{t}}^{2} \log q_{0t}(\boldsymbol{x}_{t}|\boldsymbol{x}_{0}) + \nabla_{\boldsymbol{x}_{t}} \log q_{0t}(\boldsymbol{x}_{t}|\boldsymbol{x}_{0}) \nabla_{\boldsymbol{x}_{t}} \log q_{0t}(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})^{\top} } \\ - \boxed{ \nabla_{\boldsymbol{x}_{t}} \log q_{t}(\boldsymbol{x}_{t}) \nabla_{\boldsymbol{x}_{t}} \log q_{t}(\boldsymbol{x}_{t})^{\top} } \qquad \text{ "Second-order noise" (Can turn to Denoising)} \\ \text{First-order score} \\ \text{ (Unkown)}$$

• A straightforward way (Meng, et al, 2021): replacing the first-order score function $\nabla_x \log q_t(x_t)$ by the approximated score network $\hat{s}_1(x_t, t)$.

Second-Order Denoising Score Matching Straightforward way

• (Meng et al., 2021) uses the following objective for second-order DSM:

$$egin{aligned} heta^* = rgmin_{ heta} \mathbb{E}_{q_t} \mathbb{E}_{q_{t0}} \left[\left\| oldsymbol{s}_2(heta) -
abla^2 \log q_{0t} -
abla \log q_{0t}
abla \log q_{0t}^ op + \hat{oldsymbol{s}}_1 \hat{oldsymbol{s}}_1^ op
ight\|_F^2
ight] \end{aligned}$$

However, we show that this method has unbounded score matching error, even if the training objective achieves the global optimal.

Proposition 2. (ours, informal) Assume $\nabla_x^2 \log q_t$ is unbounded (e.g. Gaussian distribution), and there exists $\delta_1 > 0$ such that $\|\hat{s}_1 - \log q_t\|_2 > \delta_1$. Then for any $\delta_1 > 0$ and C > 0, there always exists x_t such that

$$||s_2(x_t, t; \theta^*) - \nabla_x \log q_t(x_t)||_F > C$$

Error-Bounded Second-Order Denoising Score Matching

Matrix form

Theorem 3. (ours, informal) Assume \hat{s}_1 is an estimation for $\nabla_x \log q_t$, then we can learn a second-order score model $s_2(\theta)$ which minimizes

$$\mathbb{E}_{q_t(oldsymbol{x}_t)} \left[\left\| oldsymbol{s}_2(oldsymbol{x}_t, t; heta) -
abla_{oldsymbol{x}}^2 \log q_t(oldsymbol{x}_t)
ight\|_F^2
ight]$$

by optimizing

$$egin{aligned} heta^* = rgmin_{ heta} \mathbb{E}_{oldsymbol{x}_0,oldsymbol{\epsilon}} \left[rac{1}{\sigma_t^4} ig\| \sigma_t^2 oldsymbol{s}_2(oldsymbol{x}_t,t; heta) + oldsymbol{I} - oldsymbol{\ell}_1 oldsymbol{\ell}_1^ op ig\|_F^2
ight] \end{aligned}$$

where

$$\boldsymbol{\ell}_1(\boldsymbol{\epsilon}, \boldsymbol{x}_0, t) \coloneqq \sigma_t \hat{\boldsymbol{s}}_1(\boldsymbol{x}_t, t) + \boldsymbol{\epsilon}, \quad \boldsymbol{x}_t = \alpha_t \boldsymbol{x}_0 + \sigma_t \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$$

Moreover, the score matching error can be **bounded by the training error and the first-order score matching error:**

$$\left\| \boldsymbol{s}_2(\boldsymbol{x}_t, t; \theta) - \nabla_{\boldsymbol{x}}^2 \log q_t(\boldsymbol{x}_t) \right\|_F \leq \left\| \boldsymbol{s}_2(\boldsymbol{x}_t, \theta) - \boldsymbol{s}_2(\boldsymbol{x}_t, t; \theta^*) \right\|_F + \delta_1^2(\boldsymbol{x}_t, t)$$

Error-Bounded Second-Order Denoising Score Matching

Scalar form (matching trace)

Corollary 1. (ours, informal) Assume \hat{s}_1 is an estimation for $\nabla_x \log q_t$, then we can learn a second-order score model $s_2^{trace}(\theta)$ which minimizes

$$\mathbb{E}_{q_t(oldsymbol{x}_t)}\left[\left|oldsymbol{s}_2^{ extit{trace}}(oldsymbol{x}_t, t; heta) - ext{tr}ig(
abla_{oldsymbol{x}}^2 \log q_t(oldsymbol{x}_t)ig)
ight|^2
ight]$$

by optimizing

$$heta^* = rgmin_{ heta} \mathbb{E}_{oldsymbol{x}_0,oldsymbol{\epsilon}} \left[rac{1}{\sigma_t^4} \Big| \sigma_t^2 oldsymbol{s}_2^{ extit{trace}}(oldsymbol{x}_t,t; heta) \!+\! d \!-\! \|oldsymbol{\ell}_1\|_2^2 \Big|^2
ight]$$

Moreover, the score matching error can be **bounded by the training error and the first-order score matching error:**

$$ig|oldsymbol{s}_2^{trace}(oldsymbol{x}_t,t; heta) - ext{tr}ig(
abla_{oldsymbol{x}}^2 \log q_t(oldsymbol{x}_t)ig)ig| \ \leq \ |oldsymbol{s}_2^{trace}(oldsymbol{x}_t,t; heta) - oldsymbol{s}_2^{trace}(oldsymbol{x}_t,t; heta^*)| + \delta_1^2(oldsymbol{x}_t,t)$$

Error-Bounded Third-Order Denoising Score Matching

Vector form

Theorem 4. (ours, informal) Assume \hat{s}_1 is an estimation for $\nabla_x \log q_t$ and \hat{s}_2 is an estimation for $\nabla_x^2 \log q_t$, then we can learn a third score model $s_3(\theta)$ which minimizes

$$\mathbb{E}_{q_t(\boldsymbol{x}_t)} \left[\left\| \boldsymbol{s}_3(\boldsymbol{x}_t, t; \theta) - \nabla_{\boldsymbol{x}} \operatorname{tr} \left(\nabla_{\boldsymbol{x}}^2 \log q_t(\boldsymbol{x}_t) \right) \right\|_2^2 \right]$$

by optimizing

$$heta^* = \operatorname*{argmin}_{ heta} \mathbb{E}_{oldsymbol{x}_0,oldsymbol{\epsilon}} \left[rac{1}{\sigma_t^6} ig\| \sigma_t^3 oldsymbol{s}_3(oldsymbol{x}_t,t; heta) + oldsymbol{\ell}_3 ig\|_2^2
ight]$$

where

$$\boldsymbol{\ell}_1(\boldsymbol{\epsilon}, \boldsymbol{x}_0, t) \coloneqq \sigma_t \hat{\boldsymbol{s}}_1(\boldsymbol{x}_t, t) + \boldsymbol{\epsilon}, \quad \boldsymbol{\ell}_2(\boldsymbol{\epsilon}, \boldsymbol{x}_0, t) \coloneqq \sigma_t^2 \hat{\boldsymbol{s}}_2(\boldsymbol{x}_t, t) + \boldsymbol{I},$$

$$\boldsymbol{\ell}_3(\boldsymbol{\epsilon}, \boldsymbol{x}_0, t) \coloneqq \left(\|\boldsymbol{\ell}_1\|_2^2 \boldsymbol{I} - \operatorname{tr}(\boldsymbol{\ell}_2) \boldsymbol{I} - 2\boldsymbol{\ell}_2 \right) \boldsymbol{\ell}_1, \quad \boldsymbol{x}_t = \alpha_t \boldsymbol{x}_0 + \sigma_t \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}).$$

Moreover, the score matching error can be **bounded by the training error and the first-order and second-order score matching errors:**

$$\left\| \boldsymbol{s}_3(\boldsymbol{x}_t, t; \theta) - \nabla_{\boldsymbol{x}} \operatorname{tr} \left(\nabla_{\boldsymbol{x}}^2 \log q_t(\boldsymbol{x}_t) \right) \right\|_2 \le \left\| \boldsymbol{s}_3(\boldsymbol{x}_t, t; \theta) - \boldsymbol{s}_3(\boldsymbol{x}_t, t; \theta^*) \right\|_2 + \left(\delta_1^2 + \delta_{2, tr} + 2\delta_2 \right) \delta_1^2$$

Summary: Error-Bounded High-Order DSM

Bounded by training error and lower-order score matching errors

$$\left\| oldsymbol{s}_2(oldsymbol{x}_t, t; heta) -
abla_{oldsymbol{x}}^2 \log q_t(oldsymbol{x}_t)
ight\|_F \leq \left\| oldsymbol{s}_2(oldsymbol{x}_t, heta) - oldsymbol{s}_2(oldsymbol{x}_t, t; heta^*)
ight\|_F + \delta_1^2(oldsymbol{x}_t, t)$$

$$\left|oldsymbol{s}_2^{\textit{trace}}(oldsymbol{x}_t, t; heta) - ext{tr} \left(
abla_{oldsymbol{x}}^2 \log q_t(oldsymbol{x}_t)
ight)
ight| \ \leq \ \left|oldsymbol{s}_2^{\textit{trace}}(oldsymbol{x}_t, t; heta) - oldsymbol{s}_2^{\textit{trace}}(oldsymbol{x}_t, t; heta^*)
ight| + \delta_1^2(oldsymbol{x}_t, t)$$

$$\left\| oldsymbol{s}_3(oldsymbol{x}_t,t; heta) -
abla_{oldsymbol{x}} \operatorname{tr} \left(
abla_{oldsymbol{x}}^2 \log q_t(oldsymbol{x}_t)
ight)
ight\|_2 \ \le \left\| oldsymbol{s}_3(oldsymbol{x}_t,t; heta) - oldsymbol{s}_3(oldsymbol{x}_t,t; heta^*)
ight\|_2 + \left(\delta_1^2 + \delta_{2,tr} + 2\delta_2
ight) \delta_1^2$$

Part III.

Training Score Models by High-Order DSM

Variance Reduction by Time-Reweighting

The "noise-prediction" trick in (Ho et al. 2020)

Our training objectives is:

$$\mathcal{J}_{\text{DSM}}^{(1)}(\theta) \coloneqq \mathbb{E}_{t,\boldsymbol{x}_{0},\boldsymbol{\epsilon}} \Big[\| \sigma_{t}\boldsymbol{s}_{\theta}(\boldsymbol{x}_{t},t) + \boldsymbol{\epsilon} \|_{2}^{2} \Big]
\mathcal{J}_{\text{DSM}}^{(2)}(\theta) \coloneqq \mathbb{E}_{t,\boldsymbol{x}_{0},\boldsymbol{\epsilon}} \Big[\| \sigma_{t}^{2}\nabla_{\boldsymbol{x}}\boldsymbol{s}_{\theta}(\boldsymbol{x}_{t},t) + \boldsymbol{I} - \boldsymbol{\ell}_{1}\boldsymbol{\ell}_{1}^{\top} \|_{F}^{2} \Big],
\mathcal{J}_{\text{DSM}}^{(2,\text{tr})}(\theta) \coloneqq \mathbb{E}_{t,\boldsymbol{x}_{0},\boldsymbol{\epsilon}} \Big[| \sigma_{t}^{2}\operatorname{tr}(\nabla_{\boldsymbol{x}}\boldsymbol{s}_{\theta}(\boldsymbol{x}_{t},t)) + d - \|\boldsymbol{\ell}_{1}\|_{2}^{2} \|^{2} \Big],
\mathcal{J}_{\text{DSM}}^{(3)}(\theta) \coloneqq \mathbb{E}_{t,\boldsymbol{x}_{0},\boldsymbol{\epsilon}} \Big[\| \sigma_{t}^{3}\nabla_{\boldsymbol{x}}\operatorname{tr}(\nabla_{\boldsymbol{x}}\boldsymbol{s}_{\theta}(\boldsymbol{x}_{t},t)) + \boldsymbol{\ell}_{3} \|_{2}^{2} \Big],$$

$$\min_{\theta} \mathcal{J}_{\mathrm{DSM}}^{(1)}(\theta) + \lambda_1 \left(\mathcal{J}_{\mathrm{DSM}}^{(2)}(\theta) + \mathcal{J}_{\mathrm{DSM}}^{(2,tr)}(\theta) \right) + \lambda_2 \mathcal{J}_{\mathrm{DSM}}^{(3)}(\theta),$$

Scale-up to High Dimension

By Hutchinson's trace estimator (Hutchinson, 1989)

• Our training objectives for high-dimensional data are:

$$\mathcal{J}_{\text{DSM,estimation}}^{(2)}(\theta) = \mathbb{E}_{t,\boldsymbol{x}_{0},\boldsymbol{\epsilon}}\mathbb{E}_{p(\boldsymbol{v})}\left[\left\|\sigma_{t}^{2}\boldsymbol{s}_{jvp} + \boldsymbol{v} - (\sigma_{t}\hat{\boldsymbol{s}}_{1}\cdot\boldsymbol{v} + \boldsymbol{\epsilon}\cdot\boldsymbol{v})(\sigma_{t}\hat{\boldsymbol{s}}_{1} + \boldsymbol{\epsilon})\right\|_{2}^{2}\right], \\
\mathcal{J}_{\text{DSM,estimation}}^{(2,\text{tr})}(\theta) = \mathbb{E}_{t,\boldsymbol{x}_{0},\boldsymbol{\epsilon}}\mathbb{E}_{p(\boldsymbol{v})}\left[\left|\sigma_{t}^{2}\boldsymbol{v}^{\top}\boldsymbol{s}_{jvp} + \|\boldsymbol{v}\|_{2}^{2} - |\sigma_{t}\hat{\boldsymbol{s}}_{1}\cdot\boldsymbol{v} + \boldsymbol{\epsilon}\cdot\boldsymbol{v}|^{2}\right|^{2}\right], \\
\mathcal{J}_{\text{DSM,estimation}}^{(3)}(\theta) = \mathbb{E}_{t,\boldsymbol{x}_{0},\boldsymbol{\epsilon}}\mathbb{E}_{p(\boldsymbol{v})}\left[\left\|\sigma_{t}^{3}\boldsymbol{v}^{\top}\nabla_{\boldsymbol{x}}\boldsymbol{s}_{jvp} + |\sigma_{t}\hat{\boldsymbol{s}}_{1}\cdot\boldsymbol{v} + \boldsymbol{\epsilon}\cdot\boldsymbol{v}|^{2}(\sigma_{t}\hat{\boldsymbol{s}}_{1} + \boldsymbol{\epsilon}) - (\sigma_{t}^{2}\boldsymbol{v}^{\top}\hat{\boldsymbol{s}}_{jvp} + \|\boldsymbol{v}\|_{2}^{2})(\sigma_{t}\hat{\boldsymbol{s}}_{1} + \boldsymbol{\epsilon}) \\
-2(\sigma_{t}\hat{\boldsymbol{s}}_{1}\cdot\boldsymbol{v} + \boldsymbol{\epsilon}\cdot\boldsymbol{v})(\sigma_{t}^{2}\hat{\boldsymbol{s}}_{jvp} + \boldsymbol{v})\right\|_{2}^{2}\right],$$

Proposition 3. (ours, informal) The training objectives for high-dimensional data can upper bound the corresponding original objectives:

$$\mathcal{J}_{\mathrm{DSM}}^{(2)}(\theta) = \mathcal{J}_{\mathrm{DSM,estimation}}^{(2)}(\theta), \quad \mathcal{J}_{\mathrm{DSM}}^{(2,\mathrm{tr})}(\theta) \leq \mathcal{J}_{\mathrm{DSM,estimation}}^{(2,\mathrm{tr})}(\theta), \quad \mathcal{J}_{\mathrm{DSM}}^{(3)}(\theta) \leq \mathcal{J}_{\mathrm{DSM,estimation}}^{(3)}(\theta)$$

Example: 1-D mixture-of-Gaussians

• Denote

$$egin{aligned} &\ell_{ ext{Fisher}}(t) \coloneqq rac{1}{2}g(t)^2 D_{ ext{F}}(q_t \parallel p_t^{ ext{ODE}}), \ &\ell_{ ext{SM}}(t) \coloneqq rac{1}{2}g(t)^2 \mathbb{E}_{q_t(oldsymbol{x}_t)} \|oldsymbol{s}_{ heta}(oldsymbol{x}_t, t) -
abla_{oldsymbol{x}} \log q_t(oldsymbol{x}_t) \|_2^2, \end{aligned}$$

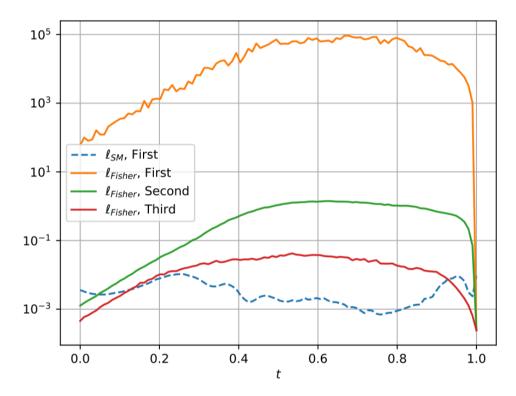


Figure 3. $\ell_{\text{Fisher}}(t)$ and $\ell_{\text{SM}}(t)$ of ScoreODEs (VE type) on 1-D mixture of Gaussians, trained by minimizing the first, second, third-order score matching objectives.

Density modeling on 2-D checkerboard data

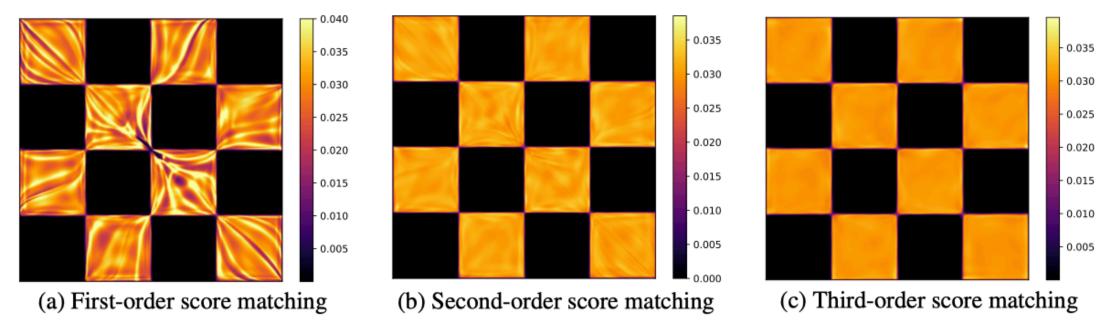


Figure 4. Model density of ScoreODEs (VE type) on 2-D checkerboard data.

Density modeling on CIFAR-10

Table 1. Negative log-likelihood (NLL) in bits/dim (bpd) and sample quality (FID scores) on CIFAR-10 and ImageNet 32x32.

Model	CIFAR-10		ImageNet 32x32
	$NLL\downarrow$	$FID\downarrow$	$NLL\downarrow$
VE (Song et al., 2020)	3.66	2.42	4.21
VE (second) (ours) VE (third) (ours)	3.44 3.38	2.37 2.95	4.06 4.04
VE (deep) (Song et al., 2020) VE (deep, second) (ours) VE (deep, third) (ours)	3.45 3.35 3.27	2.19 2.43 2.61	4.21 4.05 4.03

Random samples of SGMs by PC sampler (Song, et al., 2021)

First-Order DSM

Second-Order DSM

Third-Order DSM

Summary and Discussion

• We analyze the relationship between score matching and KL divergence of ScoreODEs, and give an upper bound of KL divergence by high-order score matchings.

• We propose a novel error-bounded high-order denoising score matching method.

Our proposed method can improve the likelihood of ScoreODEs.