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Gaussian Graphical Models

D
» For an undirected graph G = ({X1,---, X4}, E), \/{

if (i,j) ¢ E, then
Xi uis )<j|Xrest
» Suppose (X1, -, Xyg) ~ Ng(0,X), then :

conditional mdependence is encoded in Q = ¥ L. \,@

In particular,

.. o Figure: Conditional
(i) ¢ E Q2 =0. independence !

Christophe Giraud. “Introduction to high-dimensional statistics”. 2021.



Popular methods

» Penalized likelihood methods: Graphical Lasso [Yuan and Lin '07,
Friedman et. al. '07, Banerjee et. al. '08], etc.

» Column-by-column estimation methods: Neighborhood Selection
[Meinshausen and Biithiman '06], graphical Dantzig selector [Yuan
'10], CLIME [Cai. et. al '11], SCIO [Liu and Luo "12], Scaled Lasso
[Sun and Zhang '13], TIGER [Liu and Wang '17], etc.

» In practice, computationally intensive tuning procedures are used to
choose proper regularization level.



Graphical Rank Lasso estimator
With the Rank Loss function [Wang et. al '20] for 1 <j < d

Qi(B) = [n(n = 1)]” IZZ [(Xij — Xmj) — (Xk,—j — Xim,—j)B]

k=1 m#£k

BY) = argmin{ Q;(5) + A8} Q- Qy
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Comparison of /1-regularized estimators

Method | - 1 Minimax | || - ||F Minimax | Tuning-free
CLIME X X X
GLasso Vv Vv X
Yuan '10 Vv X X
SCIO Vv vV X
TIGER Vv Vv Asymptotic
gRankLasso vV X Complete

Table: Theoretical properties of popular ¢1-regularized methods.

» GLasso and SCIO require the Irrepresentable Condition.

» TIGER and CLIME consider a larger matrix class when only
conditional number of Q is bounded.



Second-stage estimator with non-convex penalty

» A second-stage improvement with BAU) as an initial value!:

AY) = argmin{Q;(B) + an B8}

IBeRd 1

SCAD, MCP, etc.

» Similarly, we can estimate Q) after B(j),j =1,...,d are obtained:

f n’lllxw—x B9,
=1/57, Q=Y.

K)z

» Under mild assumptions, the second-stage estimator €2 achieves the
oracle property (i.e. as if it knows the true sparsity pattern of Q)

and faster convergence rates.

1Zou and Li '08, Wang et.al. '20



Simulation studies: General comparison
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Figure: Average spectral error ||{2 — Q|| using sparse graphs.



Simulation studies: Tuning-free methods
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Simulation studies: Benefits of bias reduction
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Figure: Average spectral error || — Q||, using dense graph.



Simulation studies: Heavy-tailed setting

Frobenius Norm Error
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Figure: Average Frobenius error || — Q|| using random graph and multivariate
t-distribution t,(0,Q71).



Real data example: Human gene network

Data: d = 100 most variable probes corresponding to different lllumina

TargetID transcripts with n = 60.
Goal: learn the significant associations among the chosen traits.

Method Precision

GLasso 0.255

TIGER 0.368
gRankLasso 0.456
gRankMCP 0.518

Table: Edge recovery results

(a) Significant

edges

(b) GLasso

(d) gRankLasso (e) gRankMCP

(c) TIGER



