
A Completely Tuning-Free and Robust Approach to
Sparse Precision Matrix Estimation

Chau Tran (UC Santa Barbara)

Joint work with Guo Yu (UC Santa Barbara)



Gaussian Graphical Models

I For an undirected graph G = ({X1, · · · ,Xd},E ),
if (i , j) /∈ E , then

Xi ⊥⊥ Xj |Xrest

I Suppose (X1, · · · ,Xd) ∼ Nd(0,Σ), then
conditional independence is encoded in Ω = Σ−1.
In particular,

(i , j) /∈ E ⇐⇒ Ωij = 0. Figure: Conditional
independence 1

1Christophe Giraud. “Introduction to high-dimensional statistics”. 2021.



Popular methods

I Penalized likelihood methods: Graphical Lasso [Yuan and Lin ’07,
Friedman et. al. ’07, Banerjee et. al. ’08], etc.

I Column-by-column estimation methods: Neighborhood Selection
[Meinshausen and Bühlman ’06], graphical Dantzig selector [Yuan
’10], CLIME [Cai. et. al ’11], SCIO [Liu and Luo ’12], Scaled Lasso
[Sun and Zhang ’13], TIGER [Liu and Wang ’17], etc.

I In practice, computationally intensive tuning procedures are used to
choose proper regularization level.



Graphical Rank Lasso estimator

With the Rank Loss function [Wang et. al ’20] for 1 ≤ j ≤ d

Qj(β) = [n(n − 1)]−1
n∑

k=1

∑
m 6=k

×|(Xkj − Xmj)− (Xk,−j − Xm,−j)β|

β̂(j) = argmin
β∈Rd−1

{Qj(β) + λj‖β‖1}

σ̂2j = n−1‖X∗,j − X∗,−j β̂
(j)‖22

Ω̂jj = 1/σ̂2j , Ω̂−j ,j = −Ω̂jj β̂
(j)

Ω̂ =


Ω̂11 · · · Ω̂1j · · · Ω̂1d

Ω̂21 · · · Ω̂2j · · · Ω̂2d
...

...
...

. . .
...

Ω̂d1 · · · Ω̂dj · · · Ω̂dd





Comparison of `1-regularized estimators

Method ‖ · ‖1 Minimax ‖ · ‖F Minimax Tuning-free

CLIME × × ×
GLasso

√ √
×

Yuan ’10
√

× ×
SCIO

√ √
×

TIGER
√ √

Asymptotic
gRankLasso

√
× Complete

Table: Theoretical properties of popular `1-regularized methods.

I GLasso and SCIO require the Irrepresentable Condition.

I TIGER and CLIME consider a larger matrix class when only
conditional number of Ω is bounded.



Second-stage estimator with non-convex penalty

I A second-stage improvement with β̂(j) as an initial value1:

β̃(j) = argmin
β∈Rd−1

{Qj(β) +
d−1∑
i=1

p′η(|β̂(j)i |)|βi |}

SCAD, MCP, etc.

I Similarly, we can estimate Ω̃ after β̃(j), j = 1, ..., d are obtained:

σ̃2j = n−1‖X∗,j − X∗,−j β̃
(j)‖22,

Ω̃jj = 1/σ̃2j , Ω̃−j ,j = −Ω̃jj β̃
(j).

I Under mild assumptions, the second-stage estimator Ω̃ achieves the
oracle property (i.e. as if it knows the true sparsity pattern of Ω)
and faster convergence rates.

1Zou and Li ’08, Wang et.al. ’20



Simulation studies: General comparison

band cluster random
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Figure: Average spectral error ‖Ω̂− Ω‖2 using sparse graphs.



Simulation studies: Tuning-free methods
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Figure: Average Frobenius error ratio
‖Ω̂TIGER − Ω‖F
‖Ω̂gRankLasso − Ω‖F

using random graph.



Simulation studies: Benefits of bias reduction
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Figure: Average spectral error ‖Ω̂− Ω‖2 using dense graph.



Simulation studies: Heavy-tailed setting

ν = 3 ν = 5 ν = 10
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Figure: Average Frobenius error ‖Ω̂− Ω‖F using random graph and multivariate
t-distribution tν(0,Ω−1).



Real data example: Human gene network

Data: d = 100 most variable probes corresponding to different Illumina
TargetID transcripts with n = 60.
Goal: learn the significant associations among the chosen traits.

Method Precision

GLasso 0.255
TIGER 0.368

gRankLasso 0.456
gRankMCP 0.518

Table: Edge recovery results
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