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Motivation

o Imposing diversity can be important in many real-world applications
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Determinantal Point Processes (DPPs)

4 N
Definition. Given a ground set {1,...,n} := [n] and a positive semi-definite
matrix L € R"*", a DPP models a distribution over subsets of [n] such that

PrL(S) o< det(Lg)

\, J
*L s is a submatrix indexed by §
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det(L{1 4y) = L11Las — L3,
quality S|m|larity




Determinantal Point Processes (DPPs)

4 N
Definition. Given a ground set {1,...,n} := [n] and a positive semi-definite
matrix L € R"*", a DPP models a distribution over subsets of [n] such that

PrL(S) o< det(Lg)

\, J
*L s is a submatrix indexed by §

L — 25 1] 23
23| 26
det(L{l 4}) L11L44 — L%LL
ground set quality  similarity

o k-DPP: the support is the collection of size-k subsets, i.e.,|S| =k



Nonsymmetric DPPs (NDPPs)

o Nonsymmetric DPPs [GBDK19]. The kernel matrix can be nonsymmetric,
i.e., any I;-matrix can define a DPP. For example,

1 5/3
L— (1/2 / ) det(L1y), det(Lyay), det(Lqy.0) > 0

o Nonsymmetric kernel can induce both negative and positive interactions

det(L{i,j}) = Lf,;f,;ij — LjiLij
quality similarity

o If L is symmetric, —L;;L;; < 0, thus negative interaction

o If L is nonsymmetric, then L,;, L,; are different signs, —L;;L;; > 0
can lead to positive interaction



Nonsymmetric DPPs (NDPPs)

o Low-rank kernel decomposition of NDPP [GHD+21]:
L=vVv'4+B(C-C"B'
V,B c R"4/2 C € R¥/2*X4/2 gt d < n.

o det(Lg) > 0, for S C [n] = Pr(S) >0 = valid DPP
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o Low-rank kernel decomposition of NDPP [GHD+21]:
L=vVv'4+B(C-C"B'
V,B c R"4/2 C € R¥/2*X4/2 gt d < n.
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o Simpler form: [V B] [0 c_ o™l g

] = XWX"

r N




Contribution 1

o Goal: fast sampling algorithm for size-constrained NDPP (k-NDPP)
Pr(S) < det(Ls) |S|=k

L=XWX' XeR™M WecR™ L<d<n

o Contribution: approximate MCMC sampling algorithm

Algorithm Preprocessing Time Sampling Time
Our work O(nd?) O(k*(1 + k)*(d?logn + d°)) )
[AASV21] -~ O(n’k®)

o (+) k > 0: data-dependent constant, not dependent on d, k and n

o~

O(-) hides dependency on an accuracy parameter



Contribution 2

o Goal: fast sampling algorithm for size-unconstrained NDPP

PrL(S) oc det(Lg)

L=XWX' X ecR"™ W cR> d<n

o Contribution: approximate MCMC sampling algorithm

Algorithm Preprocessing Time Sampling Time
Our work O(nd?) OS2 (1 + k)2 (d?log n + d))1)
[Pou20] 2
(Exact) B O(nd”)
HGG+22 (+)
Hos o] O(nd?) O((1 + a)4(|SP logn + |S|* + d)

o () k > 0: data-dependent constant, independent of d, £ and .
o (x) a € (0,1] : data-dependent constant




MCMC Sampling for k-NDPP

o [AASV21] proposed MCMC sampling algorithm for k-NDPP :

1: Sy < Select a size-k subset of [n] uniformly at random

2: for t = 1,2, ..., tjter dO

3: A« Select a size-(k — 2) subset of S;_; uniformly at random
4:  {a, b} < Select a size-2 subset with probability oc det(L 4yq,5})
5S¢+ AU{a,b}
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o They proved that the mixing time is

fiter = O (k2 log (EP%;(SO)))
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o [AASV21] proposed MCMC sampling algorithm for k-NDPP :

1: Sy < Select a size-k subset of [n] uniformly at random

2: for t = 1,2, ..., tjter dO
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o Runtime of Line 4 (Computational Bottleneck):

o For (", ") candidates of S,_;, each one requires computing k x k
matrix determinant = O(k?)

o Overall runtime is O(n?k?)



MCMC Sampling for k-NDPP

o [AASV21] proposed MCMC sampling algorithm for k-NDPP :

1: Sy < Select a size-k subset of [n] uniformly at random

2: for t = 1,2, ..., tjter dO

3: A« Select a size-(k — 2) subset of S;_; uniformly at random
4:  {a, b} < Select a size-2 subset with probability oc det(L 4uq,5))
5S¢+ AU{a,b}

o They proved that the mixing time is

tiger = O (k2 log (5Pr1(50)))

o Runtime of Line 4 (Computational Bottleneck):

o We improve by combining (1) rejection sampling for 2-NDPP and
(2) tree-based sublinear time DPP sampling [GKMV19]

o The runtime is reduced to O((1 + k)?(d*logn + d*))




MCMC Sampling for Low-rank k-NDPP

o Computation bottleneck of MCMC sampling algorithm for k-NDPP :
4:  {a,b} < Select a size-2 subset with probability oc det(L augq,5})

o Key Observation:
o Equivalent to sampling {a, b} from DPP conditioned on A (2-NDPP)




MCMC Sampling for Low-rank k-NDPP

o Computation bottleneck of MCMC sampling algorithm for k-NDPP :
4:  {a,b} < Select a size-2 subset with probability oc det(L augq,5})

o Key Observation:
o Equivalent to sampling {a, b} from DPP conditioned on A (2-NDPP)

o Given a low-rank NDPPas L = XW X |,
DPP conditioned on 4 & DPP with LA = XW4X " where

WA =W -WX | (X4 WXa,) ' X4 W
N can be computed in O(d*k) time

r N




MCMC Sampling for Low-rank k-NDPP

1: Sp « Select a size-k subset of [n] uniformly at random

2: for t = 1,2, ..., tjter dO

3: A <« Select a size-(k — 2) subset of S;_; uniformly at random

4 WAW -—WX, (XaWX4,) ' X W = O(d?)
5. {a,b} + Sample a subset from 2-NDPP with XWAX "

6: Sy <+ AU{a,b}
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1: Sy < Select a size-k subset of [n] uniformly at random

2: for t = 1,2, ..., tjter dO

3: A <« Select a size-(k — 2) subset of S;_; uniformly at random

4 WAW -—WX, (XaWX4,) ' X W = O(d?)
—5:  {a,b} + Sample a subset from 2-NDPP with XW4X T

6: S; <+ AU{a,b}

o Rejection Sampling for 2-NDPP:

1: while(true)

2:  Sample {a,b} ~ 2-DPP(L’)
AT

3. ifU([0,1]) < LUEW X o))

det(Z7, )
4: return {a,b}

L’ : DPP kernel for proposal distribution
« Sampling can be easy and fast
« Should satisfy

det([XWAX ")) < det(Ls), S C [n]
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1: Sy < Select a size-k subset of [n] uniformly at random

2: for t = 1,2, ..., tjter dO

3: A <« Select a size-(k — 2) subset of S;_; uniformly at random

4 WAW -—WX, (XaWX4,) ' X W = O(d?)

—5:  {a,b} + Sample a subset from 2-NDPP with XW4X T
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o Rejection Sampling for 2-NDPP:

1: while(true)

2:  Sample {a,b} ~ 2-DPP(L’)
AT

3. ifU([0,1]) < LUEW X o))

det(Z7, )
4: return {a,b}

L’ : DPP kernel for proposal distribution
« Sampling can be easy and fast
« Should satisfy

det([XWAX ")) < det(Ls), S C [n]

o We find a symmetric W# € R%*¢in time O(d*) such that

det((XWAX T]g) < det((XW2XT)s), SC [n]

proposal distribution




MCMC Sampling for Low-rank k-NDPP

1: Sy < Select a size-k subset of [n] uniformly at random
2: for t = 1,2, ..., tjter dO
3: A <« Select a size-(k — 2) subset of S;_; uniformly at random

4 WAW -WX, (XaWX4,) ' X W = O(d?)
5. {a,b} + Sample a subset from 2-NDPP with XWAX "
6 St — AU {a, b}

o Rejection Sampling for 2-NDPP (Proposal Construction):
o Consider the spectral decomposition

WA_WAT : g 0 o ’ T
> :PDlag([_?,l 01},---,[_%/2 d({QDP
W = 5 —}—PDl&g (0'1,0'1,...,O'd/2,0'd/2) PT
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o Theorem. det((XW*X ']s) < det((XW*X ]5), S C [n]



MCMC Sampling for Low-rank k-NDPP

1: Sy < Select a size-k subset of [n] uniformly at random
2: for t = 1,2, ..., tjter dO
3: A <« Select a size-(k — 2) subset of S;_; uniformly at random

4 WAW -WX, (XaWX4,) ' X W = O(d?)
5. {a,b} + Sample a subset from 2-NDPP with XWAX "
6 St — AU {(l, b}

o Rejection Sampling for 2-NDPP (Proposal Construction):
o Consider the spectral decomposition

WA_WAT : g 0 o ’ T
> :PDlag([_?,l 01},---,[_%/2 dﬁDP
W = 5 —}—PDl&g (0170-17"'70-d/270-d/2) PT

o Theorem. det([XW4X T]s) < det([ XWX "), SC [n]
o The decomposition takes time O(d*)
o Similar construction was used in [HGG+22], but with©O(nd?) runtime



MCMC Sampling for Low-rank k-NDPP

1: Sp < Select a size-k subset of [n] uniformly at random
2: for t =1,2,..., tjter do
3: A < Select a size-(k — 2) subset of S;_; uniformly at random

4 WACW WX, (XA WX4) ' Xy W = O(d*)
5. W SPECTRALSYMMETRIZATION(W 4) = O(d?)
6:  While true do

7 {a,b} + Sample a size-2 set from 2-DPP( XWX ")

8: i 24([0,1]) < XWX Vo) preak N> symmetric DPP

- det[Xﬁ}XT]{a’b}
9: S, +— AU {O}, b}




MCMC Sampling for Low-rank k-NDPP

1: Sy < Select a size-k subset of [n] uniformly at random
2: for t =1,2,..., tjter do
3: A < Select a size-(k — 2) subset of S;_; uniformly at random

4 WACW WX, (XA WX4) ' Xy W = O(d*)
5. W SPECTRALSYMMETRIZATION(W 4) = O(d?)
6:  While true do

T {a,b} + Sample a size-2 set from 2-DPP( XWX ")

8 if 24(]0,1]) < det[ XWX 'J(a1) -break N symmetric DPP

- det[Xﬁ}XT]{a’b}
9: S+ AU {O}, b}

o Rejection Sampling for 2-NDPP (Sampling Proposal DPP):

o Sampling {a, b} using the tree-based DPP sampling [GKMV19] is done
in time O(d*logn + d°)




MCMC Sampling for Low-rank k-NDPP

7: {a,b} < Sample a size-2 set from 2DPP(XWXT)
\> symmetric DPP
o Tree-based Symmetric DPP Sampling [GKMV19]:

o Pre-processing:
- Build a binary tree with X
- Each nodes stores a set of indices
and a d X d matrix
- Runtime: O(nd?)

o Sampling:
- Equivalent to 2 tree traversals = O(d”logn)
- Computation of a query matrix (only depends on W#) = ©(4?)
- Runtime: O(d” logn + d°)



MCMC Sampling for Low-rank k-NDPP

f A )
Preprocessing: = O(nd?)

1: Build a binary tree where each node stores indices A C [n] and XZ,:X A,

Sampling:

1: Sy < Select a size-k subset of [n] uniformly at random

2: for t =1,2, ..., titer do

3: A< Select a size-(k — 2) subset of S;_; uniformly at random

L WACW WX (XA, WXa,) ' X4 W = O(d’)
5. W « SPECTRALSYMMETRIZATION(W %) = O(d’)
6:  While true do
7: {a,b} < Sample from a 2—DPP(XWXT) by tree-based Samg)ling
s RU(01) < TR break = O(d'logn + )
9: S, +— AU {CL, b}

\, y




MCMC Sampling for Low-rank k-NDPP

f A )
Preprocessing: = O(nd?)

1: Build a binary tree where each node stores indices A C [n] and XZ,:X A,

Sampling:

1: Sy < Select a size-k subset of [n] uniformly at random

2: for t = 1,2, ..., tjter do

3: A <« Select a size-(k — 2) subset of S;_; uniformly at random |
WA« W -WX] (X4 WX4.) ' X4 W = O(d’)

—~ 3
W < SPECTRALSYMMETRIZATION(W#) = 0(d”)

4

5:

6:  While true do

7 {a,b} < Sample from a 2—DPP(XWXT) by tree-based Samépling 3
AxT N :

if 44([0,1]) < diié{%?ﬂii? :break = O(d* logn + d°)

Sy« AUA{a,b}

\, y

o Question. What is the number of rejections?



MCMC Sampling for Low-rank k-NDPP

o Average Number of Rejections for 2-NDPP Rejection Sampling
Theorem. For anyA ¢ (™)), k > 2, define that

Tmax(W4 = WAT)
minYG([n]Q\A) O'min([X(WA + WAT)XT]Y)

KA =
and Kk := max KA.
AC[n],|A[<d—-2

Then the number of average rejections is no greater than
(1 4+ omax(X)? k)2

o kA is upper bounded by a ratio of largest and smallest eigenvalues
among some 2-by-2 matrices = not dependent on either n or d



MCMC Sampling for Low-rank k-NDPP

o Average Number of Rejections for 2-NDPP Rejection Sampling
Theorem. For anyA ¢ (™)), k > 2, define that

Tmax(W4 = WAT)
minYG([n]Q\A) O'min([X(WA + WAT)XT]Y)

Y =
and K = max KA.
AC|[n],|A|<d—2

Then the number of average rejections is no greater than
(1 4+ omax(X)? k)2

o Practically, the number of rejections for real-world datasets is small

Dataset UK Retail Recipe Instacart | Million Song

Average Number of
Rejections (k = 10)

7.763 3.504 5.965 0.808




MCMC Sampling for Low-rank k-NDPP

f A )
Preprocessing: = O(nd?)

1: Build a binary tree where each node stores indices A C [n] and XZ,:X A,

Sampling:

1: Sy < Select a size-k subset of [n] uniformly at random

2: for t = 1,2, ..., tjter do

3: A <« Select a size-(k — 2) subset of S;_; uniformly at random |
L WACW WX (XA, WXa,) ' X4 W = O(d’)
5. W 4 SPECTRALSYMMETRIZATION(W4) = O(d’)
6:  While true do = O((1 + omax(X)?K)?)
7 {a,b} < Sample from a 2—DPP(XWXT) by tree-based sampling
= O(d*logn + d*)

. det[XWAXT]{ajb} .
if 4([0,1]) < KT g ‘break

Sy (-AU{CL,I)}

\, y

o Total sampling time: O (tite; - (1 4 omax(X)?k)? - (d*logn + d°))



MCMC Sampling for Size-unconstrained NDPP

o Goal: fast sampling algorithm for size-unconstrained NDPP

PrL(S) oc det(Lg)

L=XWX' X ecR"™ W cR> d<n




MCMC Sampling for Size-unconstrained NDPP

o Goal: fast sampling algorithm for size-unconstrained NDPP

PrL(S) oc det(Lg)

L=XWX' X ecR"™ W cR> d<n

o Key Approach:

Step 1. Sample k € {0,1,2,...,d} with prob. o< 3 g/, det([(XW X '])

= This can be done in time O(nd?) as a preprocessing step
= This does not impact the runtime of tree construction



MCMC Sampling for Size-unconstrained NDPP

o Goal: fast sampling algorithm for size-unconstrained NDPP

PrL(S) oc det(Lg)

L=XWX' X ecR"™ W cR> d<n

o Key Approach:

Step 1. Sample k € {0,1,2,...,d} with prob. o< 3 g/, det([(XW X '])

= This can be done in time O(nd?) as a preprocessing step
= This does not impact the runtime of tree construction

Step 2. Run our k-NDPP sampling algorithm with the chosen &
= The number of MCMC iterations (i.e. titer) only changes with &



Experiments

o Dataset: kernels obtained by the gradient-based MLE learning [GHD+21]
on 5 recommendation datasets (rank d = 100)

o Wall-clock times of size-constrained NDPP sampling (k = 50)
o Competitor: exact rejection sampling [HGG+22] (no runtime guarantee)

Catacet Algorithm
Rejection (Exact) MCMC (Ours)
U(I;:F;e;c;i)l 15,11 x 10" sec 334 sec
(,Fff;,%_;gz) (19,55 x 105 sec 229 sec
%Trl‘::;%‘;;; 19,50 x 10° sec 242 sec
M(iizlg;;"ﬁ%r)‘g 11,45 x 102 sec 488 sec
(n=1!30°5°9k'437) ) 4.06 x 10° sec 374 sec

I—>(>x<) . expected results, due to infeasible runtime



Experiments

o Dataset: kernels obtained by the gradient-based MLE learning [GHD+21]
on 5 recommendation datasets (rank d = 100)

o Wall-clock times of size-unconstrained NDPP sampling
o Competitors: exact rejection sampling [HGG+22], Cholesky-based [Pou20]

Dataset Algorithm
Rejection (Exact) Cholesky (Exact) MCMC (Ours)
U(I:ng;c;i)l 11,34 x 108 sec 5.6 sec 75.3
(Ef;,ciggg) 1.0 sec 11.5 sec 11.8 sec
%:::32‘;';; 1351.6 sec 711 sec 21 sec
M%Ll;;;\f{%r)]g 11.89 x 10'° sec 537 sec 281 sec
(n=1 !300509% 437) 1022 sec 1540 sec 80 sec

I—>(>x<) . expected results, due to infeasible runtime




Conclusion

Summary:

o We accelerate MCMC sampling for size-constrained nonsymmetric DPPs
(k-NDPPs) by leveraging a tree-based rejection sampling algorithm

o We extend this to size-unconstrained sampling while preserving the same
efficient runtime

o We achieve runtime that is sublinear in n, and polynomial in d and k

o The fastest state-of-the-art “exact” sampling algorithms for NDPP has a
runtime exponential in d

o We verify orders of magnitude speedups with real-world datasets



