Scalable MCMC Sampling for Nonsymmetric Determinantal Point Processes

Insu Han[®], Mike Gartrell[®], Elvis Dohmatob[®], Amin Karbasi [®]

◆Yale University•Criteo Al Lab

*Facebook AI Lab

ICML 2022

Motivation

o Imposing diversity can be important in many real-world applications

(Sutskever et al., 2014)

Movie Recommendation

Multi-agent Learning

Machine Translation

Determinantal Point Processes (DPPs)

Definition. Given a ground set $\{1,\ldots,n\}:=[n]$ and a positive semi-definite matrix $L \in \mathbb{R}^{n \times n}$, a DPP models a distribution over subsets of [n] such that

$$\mathcal{P}_{\boldsymbol{L}}(S) \propto \det(\boldsymbol{L}_S)$$

* $m{L}_S$ is a submatrix indexed by S

 $\Pr\left[\begin{array}{c|c} 2.5 & 2.3 \\ \hline 2.3 & 2.6 \end{array}\right]$

quality similarity

ground set

Determinantal Point Processes (DPPs)

Definition. Given a ground set $\{1,\ldots,n\}:=[n]$ and a positive semi-definite matrix $L\in\mathbb{R}^{n\times n}$, a DPP models a distribution over subsets of [n] such that

$$\mathcal{P}_{\boldsymbol{L}}(S) \propto \det(\boldsymbol{L}_S)$$

* $m{L}_S$ is a submatrix indexed by S

$$\Pr\left(\left(\begin{array}{c} 2.5 \\ 2.3 \end{array}\right) \propto \det\left(\begin{array}{c} 2.5 \\ 2.3 \end{array}\right) \right)$$

$$\det(m{L}_{\{1,4\}}) = m{L}_{11}m{L}_{44} - m{L}_{14}^2$$
 quality similarity

 \circ k-DPP: the support is the collection of size-k subsets, i.e., |S|=k

Nonsymmetric DPPs (NDPPs)

o **Nonsymmetric DPPs** [GBDK19]. The kernel matrix can be nonsymmetric, i.e., any P_0 -matrix can define a DPP. For example,

$$L = \begin{pmatrix} 1 & 5/3 \\ 1/2 & 1 \end{pmatrix}$$
 $\det(L_{\{1\}}), \det(L_{\{2\}}), \det(L_{\{1,2\}}) \ge 0$

Nonsymmetric kernel can induce both negative and positive interactions

$$\det(m{L}_{\{i,j\}}) = m{L}_{ii} m{L}_{jj} - m{L}_{ji} m{L}_{ij}$$
 quality similarity

- o If $m{L}$ is symmetric, $-m{L}_{ij}m{L}_{ji} \leq 0$, thus negative interaction
- o If L is nonsymmetric, then L_{ij}, L_{ji} are different signs, $-L_{ij}L_{ji} \geq 0$ can lead to positive interaction

Nonsymmetric DPPs (NDPPs)

Low-rank kernel decomposition of NDPP [GHD+21]:

$$m{L} = m{V}m{V}^{ op} + m{B}(m{C} - m{C}^{ op})m{B}^{ op}$$
 $m{V}, m{B} \in \mathbb{R}^{n imes d/2}, m{C} \in \mathbb{R}^{d/2 imes d/2} ext{ s.t. } d \ll n.$

$$\circ \det(\mathbf{L}_S) \geq 0$$
, for $S \subseteq [n] \Rightarrow \mathcal{P}_{\mathbf{L}}(S) \geq 0 \Rightarrow \text{valid DPP}$

$$L := egin{bmatrix} oldsymbol{V} oldsymbol{B} oldsymbol{U} oldsymbol{B}^{ op} oldsymbol{V}^{ op} oldsymbol{B}^{ op} oldsymbol{C} oldsymbol{C} oldsymbol{C}^{ op} oldsymbol{C}^{ op} oldsymbol{C} oldsymbol{C}^{ op} oldsymbol{V}^{ op} oldsymbol{B}^{ op} oldsymbol{C} oldsymbol{C} oldsymbol{C}^{ op} oldsymbol{C} oldsymbol{C}^{ op} oldsymbol{C} oldsymbol{C} oldsymbol{C}^{ op} oldsymbol{C} oldsymbol{C$$

Nonsymmetric DPPs (NDPPs)

Low-rank kernel decomposition of NDPP [GHD+21]:

$$m{L} = m{V}m{V}^{ op} + m{B}(m{C} - m{C}^{ op})m{B}^{ op}$$
 $m{V}, m{B} \in \mathbb{R}^{n imes d/2}, m{C} \in \mathbb{R}^{d/2 imes d/2} ext{ s.t. } d \ll n.$

- $\circ \det(\mathbf{L}_S) \geq 0$, for $S \subseteq [n] \Rightarrow \mathcal{P}_{\mathbf{L}}(S) \geq 0 \Rightarrow \mathsf{valid} \mathsf{DPP}$
- \circ Simpler form: $egin{bmatrix} m{V} & m{B} \end{bmatrix} m{m{A}} & m{O} & m{O} & m{C} m{C}^ op \end{bmatrix} m{m{C}}^ op m{A} & m{C} & m{C}$

$$L := egin{pmatrix} egin{pmatrix}$$

Contribution 1

 \circ **Goal:** fast sampling algorithm for size-constrained NDPP (k-NDPP)

$$\mathcal{P}_{\boldsymbol{L}}(S) \propto \det(\boldsymbol{L}_S) \qquad |S| = k$$

$$\boldsymbol{L} = \boldsymbol{X} \boldsymbol{W} \boldsymbol{X}^{\top}, \ \boldsymbol{X} \in \mathbb{R}^{n \times d}, \boldsymbol{W} \in \mathbb{R}^{d \times d}, k \leq d \ll n$$

Contribution: approximate MCMC sampling algorithm

Algorithm	Preprocessing Time	Sampling Time
Our work	$\mathcal{O}(nd^2)$	$\widetilde{\mathcal{O}}(k^2(1+\kappa)^2(d^2\log n + d^3))^{(*)}$
[AASV21]	_	$\widetilde{\mathcal{O}}(n^2k^5)$

 \circ (*) $\kappa > 0$: data-dependent constant, not dependent on d,k and n

 $\widetilde{\mathcal{O}}(\cdot)$ hides dependency on an accuracy parameter

Contribution 2

Goal: fast sampling algorithm for size-unconstrained NDPP

$$\mathcal{P}_{\boldsymbol{L}}(S) \propto \det(\boldsymbol{L}_S)$$

$$\boldsymbol{L} = \boldsymbol{X} \boldsymbol{W} \boldsymbol{X}^{\top}, \ \boldsymbol{X} \in \mathbb{R}^{n \times d}, \boldsymbol{W} \in \mathbb{R}^{d \times d}, d \ll n$$

Contribution: approximate MCMC sampling algorithm

Algorithm	Preprocessing Time	Sampling Time
Our work	$\mathcal{O}(nd^2)$	$\widetilde{\mathcal{O}}(S ^2(1+\kappa)^2(d^2\log n + d^3))^{(*)}$
[Pou20] (Exact)	_	$\mathcal{O}(nd^2)$
[HGG+22] (Exact)	$\mathcal{O}(nd^2)$	$\mathcal{O}((1+\alpha)^d(S ^3\log n + S ^4 + d))^{(*)}$

 \circ (*) $\kappa>0$: data-dependent constant, independent of d,k and n

 \circ (*) $\alpha \in (0,1]$: data-dependent constant

 \circ [AASV21] proposed MCMC sampling algorithm for k-NDPP :

```
1: S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}
2: \text{for } t = 1, 2, ..., t_{\text{iter}} \text{ do}
3: A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}
4: \{a, b\} \leftarrow \text{Select a size-}2 \text{ subset with probability } \propto \det(\boldsymbol{L}_{A \cup \{a, b\}})
5: S_t \leftarrow A \cup \{a, b\}
```

\circ [AASV21] proposed MCMC sampling algorithm for k-NDPP :

- 1: $S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}$
- 2: **for** $t = 1, 2, ..., t_{\text{iter}}$ **do**
- 3: $A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}$
- 4: $\{a,b\} \leftarrow \text{Select a size-2 subset with probability } \propto \det(\boldsymbol{L}_{A \cup \{a,b\}})$
- 5: $S_t \leftarrow A \cup \{a, b\}$

They proved that the mixing time is

$$t_{\text{iter}} = \mathcal{O}\left(k^2 \log\left(\frac{1}{\varepsilon \Pr(S_0)}\right)\right)$$

 \circ [AASV21] proposed MCMC sampling algorithm for k-NDPP :

```
1: S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}
2: \text{for } t = 1, 2, ..., t_{\text{iter}} \text{ do}
3: A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}
4: \{a,b\} \leftarrow \text{Select a size-}2 \text{ subset with probability } \propto \det(\mathbf{L}_{A \cup \{a,b\}})
5: S_t \leftarrow A \cup \{a,b\}
```

They proved that the mixing time is

$$t_{\text{iter}} = \mathcal{O}\left(k^2 \log\left(\frac{1}{\varepsilon \Pr(S_0)}\right)\right)$$

- Runtime of Line 4 (Computational Bottleneck):
 - \circ For $\binom{n-k}{2}$ candidates of S_{t-1} , each one requires computing $k \times k$ matrix determinant $\Rightarrow \mathcal{O}(k^3)$
 - \circ Overall runtime is $\mathcal{O}(n^2k^3)$

 \circ [AASV21] proposed MCMC sampling algorithm for k-NDPP :

```
1: S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}
2: \mathbf{for} \ t = 1, 2, ..., t_{\text{iter}} \ \mathbf{do}
3: A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}
4: \{a,b\} \leftarrow \text{Select a size-}2 \text{ subset with probability } \propto \det(\mathbf{L}_{A \cup \{a,b\}})
5: S_t \leftarrow A \cup \{a,b\}
```

They proved that the mixing time is

$$t_{\text{iter}} = \mathcal{O}\left(k^2 \log\left(\frac{1}{\varepsilon \Pr(S_0)}\right)\right)$$

- Runtime of Line 4 (Computational Bottleneck):
 - We improve by combining (1) <u>rejection sampling for 2-NDPP</u> and
 (2) <u>tree-based sublinear time DPP sampling</u> [GKMV19]
 - o The runtime is reduced to $\mathcal{O}((1+\kappa)^2(d^2\log n + d^3))$

 \circ Computation bottleneck of MCMC sampling algorithm for k-NDPP:

4: $\{a,b\} \leftarrow \text{Select a size-2 subset with probability } \propto \det(\boldsymbol{L}_{A \cup \{a,b\}})$

- Okey Observation:
 - \circ Equivalent to sampling $\{a,b\}$ from DPP conditioned on A (2-NDPP)

- \circ Computation bottleneck of MCMC sampling algorithm for k-NDPP:
 - 4: $\{a,b\} \leftarrow \text{Select a size-2 subset with probability } \propto \det(\boldsymbol{L}_{A \cup \{a,b\}})$
- Okey Observation:
 - \circ Equivalent to sampling $\{a, b\}$ from DPP conditioned on A (2-NDPP)
 - \circ Given a low-rank NDPP as $m{L} = m{X} m{W} m{X}^{ op}$, DPP conditioned on $A \Leftrightarrow$ DPP with $m{L}^A = m{X} m{W}^A m{X}^{ op}$ where

$$m{W}^A := m{W} - m{W} m{X}_{A,:}^{ op} (m{X}_{A,:} m{W} m{X}_{A,:})^{-1} m{X}_{A,:} m{W}$$
 can be computed in $\mathcal{O}(d^2k)$ time

1: $S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}$ 2: $\mathbf{for} \ t = 1, 2, ..., t_{\text{iter}} \ \mathbf{do}$ 3: $A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}$ 4: $\mathbf{W}^A \leftarrow \mathbf{W} - \mathbf{W} \mathbf{X}_{A,:}^\top (\mathbf{X}_{A,:} \mathbf{W} \mathbf{X}_{A,:})^{-1} \mathbf{X}_{A,:} \mathbf{W}$ $\Rightarrow \mathcal{O}(d^3)$ 5: $\{a, b\} \leftarrow \text{Sample a subset from 2-NDPP with } \mathbf{X} \mathbf{W}^A \mathbf{X}^\top$ 6: $S_t \leftarrow A \cup \{a, b\}$

- 1: $S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}$
- 2: **for** $t = 1, 2, ..., t_{\text{iter}}$ **do**
- 3: $A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}$
- 4: $\mathbf{W}^A \leftarrow \mathbf{W} \mathbf{W} \mathbf{X}_{A,:}^{\top} (\mathbf{X}_{A,:} \mathbf{W} \mathbf{X}_{A,:})^{-1} \mathbf{X}_{A,:} \mathbf{W}$

 $\Rightarrow \mathcal{O}(d^3)$

- 5: $\{a,b\} \leftarrow \text{Sample a subset from 2-NDPP with } \boldsymbol{X} \boldsymbol{W}^A \boldsymbol{X}^\top$
- 6: $S_t \leftarrow A \cup \{a, b\}$

Rejection Sampling for 2-NDPP:

- 1: **while**(true)
- 2: Sample $\{a, b\} \sim 2\text{-DPP}(\boldsymbol{L}')$
- 3: **if** $\mathcal{U}([0,1]) \leq \frac{\det([\boldsymbol{X}\boldsymbol{W}^{A}\boldsymbol{X}^{\top}]_{\{a,b\}})}{\det(\boldsymbol{L}'_{\{a,b\}})}$
- 4: return $\{a,b\}$

 $oldsymbol{L}'$: DPP kernel for proposal distribution

- Sampling can be <u>easy</u> and <u>fast</u>
- Should satisfy

$$\det([\boldsymbol{X}\boldsymbol{W}^{A}\boldsymbol{X}^{\top}]_{S}) \leq \det(\boldsymbol{L}'_{S}), \ S \subseteq [n]$$

- 1: $S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}$
- 2: **for** $t = 1, 2, ..., t_{\text{iter}}$ **do**
- 3: $A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}$
- 4: $\mathbf{W}^A \leftarrow \mathbf{W} \mathbf{W} \mathbf{X}_{A,:}^{\top} (\mathbf{X}_{A,:} \mathbf{W} \mathbf{X}_{A,:})^{-1} \mathbf{X}_{A,:} \mathbf{W}$

 $\Rightarrow \mathcal{O}(d^3)$

- 5: $\{a,b\} \leftarrow \text{Sample a subset from 2-NDPP with } \boldsymbol{X} \boldsymbol{W}^A \boldsymbol{X}^\top$
- 6: $S_t \leftarrow A \cup \{a, b\}$

Rejection Sampling for 2-NDPP:

- 1: **while**(true)
- 2: Sample $\{a, b\} \sim 2\text{-DPP}(\boldsymbol{L}')$
- 3: **if** $\mathcal{U}([0,1]) \leq \frac{\det([XW^AX^\top]_{\{a,b\}})}{\det(L'_{\{a,b\}})}$
- 4: return $\{a,b\}$

 $oldsymbol{L}'$: DPP kernel for proposal distribution

- Sampling can be <u>easy</u> and <u>fast</u>
- Should satisfy

$$\det([\boldsymbol{X}\boldsymbol{W}^{A}\boldsymbol{X}^{\top}]_{S}) \leq \det(\boldsymbol{L}'_{S}), \ S \subseteq [n]$$

 \circ We find a <u>symmetric</u> $\widehat{m{W}}^A \in \mathbb{R}^{d \times d}$ in time $\mathcal{O}(d^3)$ such that

$$\det([\boldsymbol{X}\boldsymbol{W}^{A}\boldsymbol{X}^{\top}]_{S}) \leq \det([\underline{\boldsymbol{X}}\widehat{\boldsymbol{W}}^{A}\boldsymbol{X}^{\top}]_{S}), \quad S \subseteq [n]$$

$$\Rightarrow \text{proposal distribution}$$

- 1: $S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}$
- 2: **for** $t = 1, 2, ..., t_{\text{iter}}$ **do**
- 3: $A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}$
- 4: $\mathbf{W}^A \leftarrow \mathbf{W} \mathbf{W} \mathbf{X}_{A,:}^{\top} (\mathbf{X}_{A,:} \mathbf{W} \mathbf{X}_{A,:})^{-1} \mathbf{X}_{A,:} \mathbf{W}$

 $\Rightarrow \mathcal{O}(d^3)$

- 5: $\{a, b\} \leftarrow \text{Sample a subset from 2-NDPP with } \boldsymbol{X} \boldsymbol{W}^A \boldsymbol{X}^\top$
- 6: $S_t \leftarrow A \cup \{a, b\}$

Rejection Sampling for 2-NDPP (Proposal Construction):

Consider the spectral decomposition

$$\frac{\boldsymbol{W}^{A} - \boldsymbol{W}^{A \top}}{2} = \boldsymbol{P} \operatorname{Diag} \left(\begin{bmatrix} 0 & \sigma_{1} \\ -\sigma_{1} & 0 \end{bmatrix}, \cdots, \begin{bmatrix} 0 & \sigma_{d/2}, \\ -\sigma_{d/2} & 0 \end{bmatrix} \right) \boldsymbol{P}^{\top}$$

$$\widehat{oldsymbol{W}}^A := rac{oldsymbol{W}^A + oldsymbol{W}^{A op}}{2} + oldsymbol{P} \, ext{Diag} \left(\sigma_1, \sigma_1, \dots, \sigma_{d/2}, \sigma_{d/2}
ight) oldsymbol{P}^ op$$

- 1: $S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}$
- 2: **for** $t = 1, 2, ..., t_{\text{iter}}$ **do**
- 3: $A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}$
- 4: $\mathbf{W}^A \leftarrow \mathbf{W} \mathbf{W} \mathbf{X}_{A,:}^{\top} (\mathbf{X}_{A,:} \mathbf{W} \mathbf{X}_{A,:})^{-1} \mathbf{X}_{A,:} \mathbf{W}$

 $\Rightarrow \mathcal{O}(d^3)$

- 5: $\{a, b\} \leftarrow \text{Sample a subset from 2-NDPP with } \boldsymbol{X} \boldsymbol{W}^A \boldsymbol{X}^\top$
- 6: $S_t \leftarrow A \cup \{a, b\}$

Rejection Sampling for 2-NDPP (Proposal Construction):

Consider the spectral decomposition

$$\frac{\boldsymbol{W}^{A} - \boldsymbol{W}^{A\top}}{2} = \boldsymbol{P} \operatorname{Diag} \left(\begin{bmatrix} 0 & \sigma_{1} \\ -\sigma_{1} & 0 \end{bmatrix}, \cdots, \begin{bmatrix} 0 & \sigma_{d/2}, \\ -\sigma_{d/2} & 0 \end{bmatrix} \right) \boldsymbol{P}^{\top}$$

$$\widehat{\boldsymbol{W}}^{A} := \frac{\boldsymbol{W}^{A} + \boldsymbol{W}^{A\top}}{2} + \boldsymbol{P} \operatorname{Diag} \left(\sigma_{1}, \sigma_{1}, \dots, \sigma_{d/2}, \sigma_{d/2} \right) \boldsymbol{P}^{\top}$$

o Theorem.
$$\det([\boldsymbol{X}\boldsymbol{W}^{A}\boldsymbol{X}^{\top}]_{S}) \leq \det([\boldsymbol{X}\widehat{\boldsymbol{W}}^{A}\boldsymbol{X}^{\top}]_{S}), S \subseteq [n]$$

- 1: $S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}$
- 2: **for** $t = 1, 2, ..., t_{\text{iter}}$ **do**
- 3: $A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}$
- 4: $\mathbf{W}^A \leftarrow \mathbf{W} \mathbf{W} \mathbf{X}_{A,:}^{\top} (\mathbf{X}_{A,:} \mathbf{W} \mathbf{X}_{A,:})^{-1} \mathbf{X}_{A,:} \mathbf{W}$

 $\Rightarrow \mathcal{O}(d^3)$

- 5: $\{a,b\} \leftarrow \text{Sample a subset from 2-NDPP with } \boldsymbol{X} \boldsymbol{W}^A \boldsymbol{X}^\top$
- 6: $S_t \leftarrow A \cup \{a, b\}$

Rejection Sampling for 2-NDPP (Proposal Construction):

Consider the spectral decomposition

$$\frac{\boldsymbol{W}^{A} - \boldsymbol{W}^{A\top}}{2} = \boldsymbol{P} \operatorname{Diag} \left(\begin{bmatrix} 0 & \sigma_{1} \\ -\sigma_{1} & 0 \end{bmatrix}, \cdots, \begin{bmatrix} 0 & \sigma_{d/2}, \\ -\sigma_{d/2} & 0 \end{bmatrix} \right) \boldsymbol{P}^{\top}$$

$$\widehat{\boldsymbol{W}}^{A} := \frac{\boldsymbol{W}^{A} + \boldsymbol{W}^{A\top}}{2} + \boldsymbol{P} \operatorname{Diag} \left(\sigma_{1}, \sigma_{1}, \dots, \sigma_{d/2}, \sigma_{d/2} \right) \boldsymbol{P}^{\top}$$

- o Theorem. $\det([XW^AX^\top]_S) \leq \det([X\widehat{W}^AX^\top]_S), S \subseteq [n]$
- \circ The decomposition takes time $\mathcal{O}(d^3)$
- \circ Similar construction was used in [HGG+22], but with $\mathcal{O}(nd^2)$ runtime

```
1: S_0 \leftarrow \text{Select a size-}k subset of [n] uniformly at random

2: for t = 1, 2, ..., t_{\text{iter}} do

3: A \leftarrow \text{Select a size-}(k-2) subset of S_{t-1} uniformly at random

4: \mathbf{W}^A \leftarrow \mathbf{W} - \mathbf{W} \mathbf{X}_{A,:}^{\top} (\mathbf{X}_{A,:} \mathbf{W} \mathbf{X}_{A,:})^{-1} \mathbf{X}_{A,:} \mathbf{W} \Rightarrow \mathcal{O}(d^3)

5: \widehat{\mathbf{W}} \leftarrow \text{SPECTRALSYMMETRIZATION}(\mathbf{W}^A) \Rightarrow \mathcal{O}(d^3)

6: While true do

7: \{a,b\} \leftarrow \text{Sample a size-2 set from 2-DPP}(\widehat{\mathbf{X}}\widehat{\mathbf{W}}\mathbf{X}^{\top})

8: \mathbf{if} \ \mathcal{U}([0,1]) \leq \frac{\det[\mathbf{X}\mathbf{W}^A\mathbf{X}^{\top}]_{\{a,b\}}}{\det[\mathbf{X}\widehat{\mathbf{W}}\mathbf{X}^{\top}]_{\{a,b\}}}; break

9: S_t \leftarrow A \cup \{a,b\}
```

```
1: S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}
2: \mathbf{for} \ t = 1, 2, ..., t_{\text{iter}} \ \mathbf{do}
3: A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}
4: \mathbf{W}^A \leftarrow \mathbf{W} - \mathbf{W} \mathbf{X}_{A,:}^{\top} (\mathbf{X}_{A,:} \mathbf{W} \mathbf{X}_{A,:})^{-1} \mathbf{X}_{A,:} \mathbf{W} \Rightarrow \mathcal{O}(d^3)
5: \widehat{\mathbf{W}} \leftarrow \text{SPECTRALSYMMETRIZATION}(\mathbf{W}^A) \Rightarrow \mathcal{O}(d^3)
6: \mathbf{While} \ \text{true} \ \mathbf{do}
7: \{a,b\} \leftarrow \text{Sample a size-2 set from 2-DPP}(\mathbf{X} \widehat{\mathbf{W}} \mathbf{X}^{\top})
8: \mathbf{if} \ \mathcal{U}([0,1]) \leq \frac{\det[\mathbf{X} \mathbf{W}^A \mathbf{X}^{\top}]_{\{a,b\}}}{\det[\mathbf{X} \widehat{\mathbf{W}} \mathbf{X}^{\top}]_{\{a,b\}}} \ \text{;break}
9: S_t \leftarrow A \cup \{a,b\}
```

Rejection Sampling for 2-NDPP (Sampling Proposal DPP):

o Sampling $\{a,b\}$ using the <u>tree-based DPP sampling</u> [GKMV19] is done in time $\mathcal{O}(d^2 \log n + d^3)$

7:
$$\{a,b\} \leftarrow \text{Sample a size-2 set from 2-DPP}(\widehat{\boldsymbol{X}}\widehat{\boldsymbol{W}}\widehat{\boldsymbol{X}}^{\top})$$
 symmetric DPP

Tree-based Symmetric DPP Sampling [GKMV19]:

- o Pre-processing:
 - Build a binary tree with $oldsymbol{X}$
 - Each nodes stores a set of indices and a $d \times d$ matrix
 - Runtime: $\mathcal{O}(nd^2)$

- o Sampling:
 - Equivalent to 2 tree traversals $\implies \mathcal{O}(d^2 \log n)$
 - Computation of a query matrix (only depends on \mathbf{W}^A) $\Longrightarrow \mathcal{O}(d^3)$
 - Runtime: $\mathcal{O}(d^2 \log n + d^3)$

Preprocessing:

$$\Rightarrow \mathcal{O}(nd^2)$$

1: Build a binary tree where each node stores indices $A \subseteq [n]$ and $\boldsymbol{X}_{A,:}^{\top} \boldsymbol{X}_{A,:}$

Sampling:

- 1: $S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}$
- 2: **for** $t = 1, 2, ..., t_{\text{iter}}$ **do**
- 3: $A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}$

4:
$$\mathbf{W}^A \leftarrow \mathbf{W} - \mathbf{W} \mathbf{X}_{A,:}^{\top} (\mathbf{X}_{A,:} \mathbf{W} \mathbf{X}_{A,:})^{-1} \mathbf{X}_{A,:} \mathbf{W}$$
 $\Rightarrow \mathcal{O}$

- 5: $\widehat{\boldsymbol{W}} \leftarrow \text{SpectralSymmetrization}(\boldsymbol{W}^A)$
- 6: While true do
- 7: $\{a,b\} \leftarrow \text{Sample from a 2-DPP}(\boldsymbol{X}\widehat{\boldsymbol{W}}\boldsymbol{X}^{\top}) \text{ by tree-based sampling}$

8: **if**
$$\mathcal{U}([0,1]) \leq \frac{\det[\mathbf{X}\mathbf{W}^A\mathbf{X}^\top]_{\{a,b\}}}{\det[\mathbf{X}\widehat{\mathbf{W}}\mathbf{X}^\top]_{\{a,b\}}}$$
; **break** $\Rightarrow \mathcal{O}(d^2 \log n + d^3)$

9:
$$S_t \leftarrow A \cup \{a, b\}$$

Preprocessing:

$$\Rightarrow \mathcal{O}(nd^2)$$

1: Build a binary tree where each node stores indices $A \subseteq [n]$ and $\boldsymbol{X}_{A,:}^{\top} \boldsymbol{X}_{A,:}$

Sampling:

```
1: S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}
```

2: **for**
$$t = 1, 2, ..., t_{\text{iter}}$$
 do

3:
$$A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}$$

4:
$$\mathbf{W}^A \leftarrow \mathbf{W} - \mathbf{W} \mathbf{X}_{A,:}^{\top} (\mathbf{X}_{A,:} \mathbf{W} \mathbf{X}_{A,:})^{-1} \mathbf{X}_{A,:} \mathbf{W}$$
 $\Rightarrow \mathcal{O}(d^3)$

5:
$$\widehat{\boldsymbol{W}} \leftarrow \text{SpectralSymmetrization}(\boldsymbol{W}^A)$$

7:
$$\{a,b\} \leftarrow \text{Sample from a 2-DPP}(\boldsymbol{X}\widehat{\boldsymbol{W}}\boldsymbol{X}^{\top}) \text{ by tree-based sampling}$$

8: **if**
$$\mathcal{U}([0,1]) \leq \frac{\det[\boldsymbol{X}\boldsymbol{W}^{A}\boldsymbol{X}^{\top}]_{\{a,b\}}}{\det[\boldsymbol{X}\widehat{\boldsymbol{W}}\boldsymbol{X}^{\top}]_{\{a,b\}}}$$
; **break** $\Rightarrow \mathcal{O}(d^{2}\log n + d^{3})$

9:
$$S_t \leftarrow A \cup \{a, b\}$$

Ouestion. What is the number of rejections?

Average Number of Rejections for 2-NDPP Rejection Sampling

Theorem. For any $A \in {[n] \choose k-2}, k \geq 2$, define that

$$egin{aligned} \kappa_A \coloneqq rac{\sigma_{\max}(oldsymbol{W}^A - oldsymbol{W}^{A^ op})}{\min_{Y \in {[n] \setminus A \choose 2}} \sigma_{\min}([oldsymbol{X}(oldsymbol{W}^A + oldsymbol{W}^{A op})oldsymbol{X}^ op]_Y)} \end{aligned}$$

and
$$\kappa := \max_{A \subseteq [n], |A| \le d-2} \kappa_A$$
.

Then the number of average rejections is no greater than

$$(1 + \sigma_{\max}(\boldsymbol{X})^2 \kappa)^2$$

o κ_A is upper bounded by a ratio of largest and smallest eigenvalues among some <u>2-by-2</u> matrices \Rightarrow **not** dependent on either n or d

Average Number of Rejections for 2-NDPP Rejection Sampling

Theorem. For any $A \in {[n] \choose k-2}, k \geq 2$, define that

$$\kappa_{A} := \frac{\sigma_{\max}(\boldsymbol{W}^{A} - \boldsymbol{W}^{A^{\top}})}{\min_{Y \in \binom{[n] \setminus A}{2}} \sigma_{\min}([\boldsymbol{X}(\boldsymbol{W}^{A} + \boldsymbol{W}^{A \top})\boldsymbol{X}^{\top}]_{Y})}$$

and
$$\kappa := \max_{A\subseteq [n], |A|\leq d-2} \kappa_A$$
.

Then the number of average rejections is no greater than

$$(1 + \sigma_{\max}(\boldsymbol{X})^2 \kappa)^2$$

Practically, the number of rejections for real-world datasets is small

Dataset	UK Retail	Recipe	Instacart	Million Song
Average Number of Rejections $(k = 10)$	7.763	3.504	5.965	0.808

Preprocessing:

 $\Rightarrow \mathcal{O}(nd^2)$

1: Build a binary tree where each node stores indices $A \subseteq [n]$ and $\boldsymbol{X}_{A,:}^{\top} \boldsymbol{X}_{A,:}$

Sampling:

```
1: S_0 \leftarrow \text{Select a size-}k \text{ subset of } [n] \text{ uniformly at random}
```

2: **for**
$$t = 1, 2, ..., t_{\text{iter}}$$
 do

3:
$$A \leftarrow \text{Select a size-}(k-2) \text{ subset of } S_{t-1} \text{ uniformly at random}$$

4:
$$\mathbf{W}^A \leftarrow \mathbf{W} - \mathbf{W} \mathbf{X}_{A,:}^{\top} (\mathbf{X}_{A,:} \mathbf{W} \mathbf{X}_{A,:})^{-1} \mathbf{X}_{A,:} \mathbf{W}$$
 $\Rightarrow \mathcal{O}(d^3)$

5:
$$\widehat{\boldsymbol{W}} \leftarrow \text{SpectralSymmetrization}(\boldsymbol{W}^A)$$

S: While true do
$$\Rightarrow \mathcal{O}((1 + \sigma_{\max}(\boldsymbol{X})^2 \kappa)^2)$$

7:
$$\{a,b\} \leftarrow \text{Sample from a 2-DPP}(\boldsymbol{X}\widehat{\boldsymbol{W}}\boldsymbol{X}^{\top}) \text{ by tree-based sampling}$$

8: if
$$\mathcal{U}([0,1]) \leq \frac{\det[\mathbf{X}\mathbf{W}^A\mathbf{X}^\top]_{\{a,b\}}}{\det[\mathbf{X}\widehat{\mathbf{W}}\mathbf{X}^\top]_{\{a,b\}}}$$
; break $\Rightarrow \mathcal{O}(d^2 \log n + d^3)$

9:
$$S_t \leftarrow A \cup \{a, b\}$$

o Total sampling time: $\mathcal{O}\left(t_{\text{iter}}\cdot(1+\sigma_{\max}(\boldsymbol{X})^2\kappa)^2\cdot\left(d^2\log n+d^3\right)\right)$

MCMC Sampling for Size-unconstrained NDPP

Goal: fast sampling algorithm for size-unconstrained NDPP

$$\mathcal{P}_{\boldsymbol{L}}(S) \propto \det(\boldsymbol{L}_S)$$

$$L = XWX^{\top}, X \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times d}, d \ll n$$

MCMC Sampling for Size-unconstrained NDPP

Goal: fast sampling algorithm for size-unconstrained NDPP

$$\mathcal{P}_{\boldsymbol{L}}(S) \propto \det(\boldsymbol{L}_S)$$

$$L = XWX^{\top}, X \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times d}, d \ll n$$

Key Approach:

Step 1. Sample
$$k \in \{0, 1, 2, \dots, d\}$$
 with prob. $\propto \sum_{|S|=k} \det([\boldsymbol{X} \boldsymbol{W} \boldsymbol{X}^{\top}]_S)$

- \Rightarrow This can be done in time $\mathcal{O}(nd^2)$ as a preprocessing step
- ⇒ This does not impact the runtime of tree construction

MCMC Sampling for Size-unconstrained NDPP

Goal: fast sampling algorithm for size-unconstrained NDPP

$$\mathcal{P}_{\boldsymbol{L}}(S) \propto \det(\boldsymbol{L}_S)$$

$$L = XWX^{\top}, X \in \mathbb{R}^{n \times d}, W \in \mathbb{R}^{d \times d}, d \ll n$$

o Key Approach:

Step 1. Sample $k \in \{0, 1, 2, \dots, d\}$ with prob. $\propto \sum_{|S|=k} \det([\boldsymbol{X} \boldsymbol{W} \boldsymbol{X}^{\top}]_S)$

- \Rightarrow This can be done in time $\mathcal{O}(nd^2)$ as a preprocessing step
- ⇒ This does not impact the runtime of tree construction

Step 2. Run our k-NDPP sampling algorithm with the chosen k

 \Rightarrow The number of MCMC iterations (i.e. t_{iter}) only changes with k

Experiments

- o <u>Dataset</u>: kernels obtained by the gradient-based MLE learning [GHD+21] on 5 recommendation datasets (rank d=100)
- \circ Wall-clock times of size-constrained NDPP sampling (k = 50)
- Competitor: exact rejection sampling [HGG+22] (no runtime guarantee)

Dataset	Algorithm		
	Rejection (Exact)	MCMC (Ours)	
UK Retail (<i>n</i> =3,941)	$^{(*)}5.11 \times 10^{12} \text{ sec}$	334 sec	
Recipe (<i>n</i> =7,993)	$^{(*)}$ 9.55 × 10^5 sec	229 sec	
Instacart (<i>n</i> =49,677)	$^{(*)}$ 9.50 × 10 ⁵ sec	242 sec	
Million Song (<i>n</i> =371,410)	$^{(*)}1.45 \times 10^{12} \text{ sec}$	488 sec	
Book (<i>n</i> =1,059,437)	$^{(*)}$ 4.06 × 10 ⁶ sec	374 sec	

→ (*): expected results, due to infeasible runtime

Experiments

- o <u>Dataset</u>: kernels obtained by the gradient-based MLE learning [GHD+21] on 5 recommendation datasets (rank d=100)
- Wall-clock times of size-unconstrained NDPP sampling
- Competitors: exact rejection sampling [HGG+22], Cholesky-based [Pou20]

Dotoot	Algorithm			
Dataset	Rejection (Exact)	Cholesky (Exact)	MCMC (Ours)	
UK Retail (<i>n</i> =3,941)	$^{(*)}1.34 \times 10^8 \text{ sec}$	5.6 sec	75.3	
Recipe (<i>n</i> =7,993)	1.0 sec	11.5 sec	11.8 sec	
Instacart (<i>n</i> =49,677)	1351.6 sec	71.1 sec	21 sec	
Million Song (<i>n</i> =371,410)	$^{(*)}1.89 \times 10^{10} \text{ sec}$	537 sec	281 sec	
Book (<i>n</i> =1,059,437)	1022 sec	1540 sec	80 sec	

→ (*): expected results, due to infeasible runtime

Conclusion

Summary:

- \circ We accelerate MCMC sampling for size-constrained nonsymmetric DPPs (k-NDPPs) by leveraging a tree-based rejection sampling algorithm
- We extend this to size-unconstrained sampling while preserving the same efficient runtime
- \circ We achieve runtime that is sublinear in n, and polynomial in d and k
- \circ The fastest state-of-the-art "exact" sampling algorithms for NDPP has a runtime exponential in d
- We verify orders of magnitude speedups with real-world datasets