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Motivation

In many real-world Reinforcement Learning (RL) applications, certain constraints need to
be enforced along with reward maximization.
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Motivation

In many real-world Reinforcement Learning (RL) applications, certain constraints need to
be enforced along with reward maximization.
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Constrained Markov Decision Process (CMDP): while the finite-horizon setting or

discounted setting has received great attention, the infinite-horizon average-reward setting
is much much less understood.
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Our Contributions

We further extend our understanding of infinite-horizon average-reward CMDP.

Assumption | Regret | Constraint Violation | Efficient
(Singh et al., 2020) Ergodic T2/3 T2%/3 Yes
Ergodic VT Constant Yes
Ours WC T2/3 T2/3 Yes
WC VT VT No

WC: weakly-communicating.
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Problem Formulation: Infinite-Horizon
Average-Reward CMDP

The model is defined as tuple M = (S, A, r,c, T, P). We assume only P is unknown.
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Problem Formulation: Infinite-Horizon
Average-Reward CMDP

The model is defined as tuple M = (S, A, r,c, T, P). We assume only P is unknown.

learner starts in an arbitrary initial state s; € S.
fort=1,...,T do
L learner observes state s;, takes action a; € A, and transits to the next state s; 11 ~

PSt,at'
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Problem Formulation: Infinite-Horizon
Average-Reward CMDP

® Average utility function: J™P9(s) = liminfr_ %E[Z;l d(st,at)|m, P,s1 = s].
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Problem Formulation: Infinite-Horizon
Average-Reward CMDP

® Average utility function: J™P9(s) = liminfr_ %E[Z;l d(st,at)|m, P,s1 = s].

e Optimal policy 7* is the solution of the following optimization problem:

argmax J™P1(s), st JmPe(s) <7,
TE(AA)®

and also J™P"(s) = J* for some constant J*.
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Problem Formulation: Infinite-Horizon
Average-Reward CMDP

® Average utility function: J™P9(s) = liminfr_ %E[Z;l d(st,at)|m, P,s1 = s].

e Optimal policy 7* is the solution of the following optimization problem:

argmax J™P1(s), st JmPe(s) <7,
TE(BA)®
and also J™P"(s) = J* for some constant J*.

Learning Objective: ensure large reward while at the same time incurring small cost
relative to the threshold 7.

T T

Regret: Rt = E(J* — r(st,a¢)), Constraint Violation: Cy = Z(c(st, at) — 7).

t=1 t=1
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Results for Ergodic MDPs

Main Ideas: perform policy optimization to update policy incrementally.
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Results for Ergodic MDPs

Main Ideas: perform policy optimization to update policy incrementally.

® Policy Evaluation: leverage ergodicity to estimate performance of learner’s policy.
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Results for Ergodic MDPs

Main Ideas: perform policy optimization to update policy incrementally.
® Policy Evaluation: leverage ergodicity to estimate performance of learner’s policy.

® Policy Improvement: a novel value function estimator, and a new bonus term to deal
with the error of transition estimation in the value function estimator.
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Results for Ergodic MDPs

Main Ideas: perform policy optimization to update policy incrementally.
® Policy Evaluation: leverage ergodicity to estimate performance of learner’s policy.

® Policy Improvement: a novel value function estimator, and a new bonus term to deal
with the error of transition estimation in the value function estimator.

e Constraint Violation: primal-dual approach plus cost slack to achieve constant
constraint violation.
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Results for Ergodic MDPs

Main Ideas: perform policy optimization to update policy incrementally.
® Policy Evaluation: leverage ergodicity to estimate performance of learner’s policy.
® Policy Improvement: a novel value function estimator, and a new bonus term to deal
with the error of transition estimation in the value function estimator.
e Constraint Violation: primal-dual approach plus cost slack to achieve constant
constraint violation.

Theorem
The described algorithm ensures R = O(\/T) and Ct = O(1).

l |

This improves the O(T?/3) bounds of (Singh et al., 2020) in both metrics.
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Results for Weakly Communicating MDPs

Main Idea: Finite-horizon approximation similar to (Wei et al., 2020).
® Divide T time steps into K episodes, each of length H.

® Treat each episode as interacting with a finite-horizon MDP, and solve it through the
len of occupancy measure, where the expected reward and cost are both linear
functions and thus easy to optimize.
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Results for Weakly Communicating MDPs

Theorem
The described algorithm ensures Rt = @(T2/3) and Ct = @(T2/3)_

Bottleneck of the Analysis: the span of value functions are bounded by H.
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Results for Weakly Communicating MDPs

Theorem
The described algorithm ensures Rt = @(T2/3) and Ct = @(T2/3)_

Bottleneck of the Analysis: the span of value functions are bounded by H.
Observation: the span of the value functions of optimal policy are properly bounded by

smaller quantities.
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Results for Weakly Communicating MDPs

Theorem
The described algorithm ensures Rt = @(T2/3) and Ct = @(T2/3)_
Bottleneck of the Analysis: the span of value functions are bounded by H.

Observation: the span of the value functions of optimal policy are properly bounded by
smaller quantities.

Theorem

Incorporating the constraints on the span of the value functions ensures Rt = OWT)
and Cr = O(VT).

Limitation: the algorithm is inefficient.
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Conclusion

We further extend our understanding of infinite-horizon average-reward CMDP.

Assumption | Regret | Constraint Violation | Efficient
(Singh et al., 2020) Ergodic T2/3 T2%/3 Yes
Ergodic VT Constant Yes
Ours WC T2/3 T2/3 Yes
WC VT VT No

WC: weakly-communicating.
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