

# Learning Infinite-horizon Average-reward Markov Decision Process with Constraints

Liyu Chen, Rahul Jain, Haipeng Luo

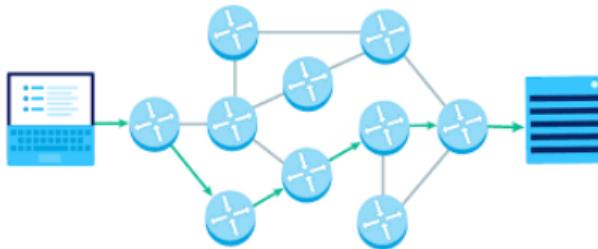
University of Southern California

July 11, 2022

# Motivation

---

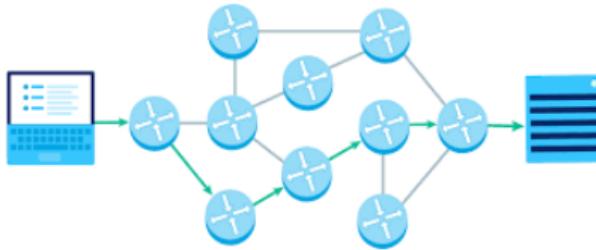
In many real-world Reinforcement Learning (RL) applications, certain constraints need to be enforced along with reward maximization.



# Motivation

---

In many real-world Reinforcement Learning (RL) applications, certain constraints need to be enforced along with reward maximization.



**Constrained Markov Decision Process (CMDP):** while the finite-horizon setting or discounted setting has received great attention, the infinite-horizon average-reward setting is much much less understood.

# Our Contributions

---

We further extend our understanding of infinite-horizon average-reward CMDP.

|                      | Assumption | Regret     | Constraint Violation | Efficient |
|----------------------|------------|------------|----------------------|-----------|
| (Singh et al., 2020) | Ergodic    | $T^{2/3}$  | $T^{2/3}$            | Yes       |
| Ours                 | Ergodic    | $\sqrt{T}$ | Constant             | Yes       |
|                      | WC         | $T^{2/3}$  | $T^{2/3}$            | Yes       |
|                      | WC         | $\sqrt{T}$ | $\sqrt{T}$           | No        |

WC: weakly-communicating.

# Problem Formulation: Infinite-Horizon Average-Reward CMDP

---

The model is defined as tuple  $\mathcal{M} = (\mathcal{S}, \mathcal{A}, r, c, \tau, P)$ . We assume only  $P$  is unknown.

# Problem Formulation: Infinite-Horizon Average-Reward CMDP

---

The model is defined as tuple  $\mathcal{M} = (\mathcal{S}, \mathcal{A}, r, c, \tau, P)$ . We assume only  $P$  is unknown.

learner starts in an arbitrary initial state  $s_1 \in \mathcal{S}$ .

**for**  $t = 1, \dots, T$  **do**

    learner observes state  $s_t$ , takes action  $a_t \in \mathcal{A}$ , and transits to the next state  $s_{t+1} \sim P_{s_t, a_t}$ .

# Problem Formulation: Infinite-Horizon Average-Reward CMDP

---

- Average utility function:  $J^{\pi, P, d}(s) = \liminf_{T \rightarrow \infty} \frac{1}{T} \mathbb{E}[\sum_{t=1}^T d(s_t, a_t) | \pi, P, s_1 = s]$ .

# Problem Formulation: Infinite-Horizon Average-Reward CMDP

---

- Average utility function:  $J^{\pi, P, d}(s) = \liminf_{T \rightarrow \infty} \frac{1}{T} \mathbb{E}[\sum_{t=1}^T d(s_t, a_t) | \pi, P, s_1 = s]$ .
- Optimal policy  $\pi^*$  is the solution of the following optimization problem:

$$\operatorname{argmax}_{\pi \in (\Delta_{\mathcal{A}})^{\mathcal{S}}} J^{\pi, P, r}(s), \quad \text{s.t. } J^{\pi, P, c}(s) \leq \tau,$$

and also  $J^{\pi^*, P, r}(s) = J^*$  for some constant  $J^*$ .

# Problem Formulation: Infinite-Horizon Average-Reward CMDP

---

- Average utility function:  $J^{\pi, P, d}(s) = \liminf_{T \rightarrow \infty} \frac{1}{T} \mathbb{E}[\sum_{t=1}^T d(s_t, a_t) | \pi, P, s_1 = s]$ .
- Optimal policy  $\pi^*$  is the solution of the following optimization problem:

$$\operatorname{argmax}_{\pi \in (\Delta_{\mathcal{A}})^{\mathcal{S}}} J^{\pi, P, r}(s), \quad \text{s.t. } J^{\pi, P, c}(s) \leq \tau,$$

and also  $J^{\pi^*, P, r}(s) = J^*$  for some constant  $J^*$ .

**Learning Objective:** ensure large reward while at the same time incurring small cost relative to the threshold  $\tau$ .

$$\text{Regret: } R_T = \sum_{t=1}^T (J^* - r(s_t, a_t)), \quad \text{Constraint Violation: } C_T = \sum_{t=1}^T (c(s_t, a_t) - \tau).$$

# Results for Ergodic MDPs

---

**Main Ideas:** perform policy optimization to update policy incrementally.

# Results for Ergodic MDPs

---

**Main Ideas:** perform policy optimization to update policy incrementally.

- Policy Evaluation: leverage ergodicity to estimate performance of learner's policy.

# Results for Ergodic MDPs

---

**Main Ideas:** perform policy optimization to update policy incrementally.

- Policy Evaluation: leverage ergodicity to estimate performance of learner's policy.
- Policy Improvement: a novel value function estimator, and a new bonus term to deal with the error of transition estimation in the value function estimator.

# Results for Ergodic MDPs

---

**Main Ideas:** perform policy optimization to update policy incrementally.

- Policy Evaluation: leverage ergodicity to estimate performance of learner's policy.
- Policy Improvement: a novel value function estimator, and a new bonus term to deal with the error of transition estimation in the value function estimator.
- Constraint Violation: primal-dual approach plus cost slack to achieve constant constraint violation.

# Results for Ergodic MDPs

---

**Main Ideas:** perform policy optimization to update policy incrementally.

- Policy Evaluation: leverage ergodicity to estimate performance of learner's policy.
- Policy Improvement: a novel value function estimator, and a new bonus term to deal with the error of transition estimation in the value function estimator.
- Constraint Violation: primal-dual approach plus cost slack to achieve constant constraint violation.

## Theorem

*The described algorithm ensures  $R_T = \tilde{\mathcal{O}}(\sqrt{T})$  and  $C_T = \tilde{\mathcal{O}}(1)$ .*

This improves the  $\tilde{\mathcal{O}}(T^{2/3})$  bounds of (Singh et al., 2020) in both metrics.

# Results for Weakly Communicating MDPs

---

**Main Idea:** Finite-horizon approximation similar to [\(Wei et al., 2020\)](#).

- Divide  $T$  time steps into  $K$  episodes, each of length  $H$ .
- Treat each episode as interacting with a finite-horizon MDP, and solve it through the lens of occupancy measure, where the expected reward and cost are both linear functions and thus easy to optimize.

# Results for Weakly Communicating MDPs

---

## Theorem

*The described algorithm ensures  $R_T = \tilde{\mathcal{O}}(T^{2/3})$  and  $C_T = \tilde{\mathcal{O}}(T^{2/3})$ .*

**Bottleneck of the Analysis:** the span of value functions are bounded by  $H$ .

# Results for Weakly Communicating MDPs

---

## Theorem

*The described algorithm ensures  $R_T = \tilde{\mathcal{O}}(T^{2/3})$  and  $C_T = \tilde{\mathcal{O}}(T^{2/3})$ .*

**Bottleneck of the Analysis:** the span of value functions are bounded by  $H$ .

**Observation:** the span of the value functions of optimal policy are properly bounded by smaller quantities.

# Results for Weakly Communicating MDPs

---

## Theorem

*The described algorithm ensures  $R_T = \tilde{\mathcal{O}}(T^{2/3})$  and  $C_T = \tilde{\mathcal{O}}(T^{2/3})$ .*

**Bottleneck of the Analysis:** the span of value functions are bounded by  $H$ .

**Observation:** the span of the value functions of optimal policy are properly bounded by smaller quantities.

## Theorem

*Incorporating the constraints on the span of the value functions ensures  $R_T = \tilde{\mathcal{O}}(\sqrt{T})$  and  $C_T = \tilde{\mathcal{O}}(\sqrt{T})$ .*

**Limitation:** the algorithm is inefficient.

# Conclusion

---

We further extend our understanding of infinite-horizon average-reward CMDP.

|                      | Assumption | Regret     | Constraint Violation | Efficient |
|----------------------|------------|------------|----------------------|-----------|
| (Singh et al., 2020) | Ergodic    | $T^{2/3}$  | $T^{2/3}$            | Yes       |
| Ours                 | Ergodic    | $\sqrt{T}$ | Constant             | Yes       |
|                      | WC         | $T^{2/3}$  | $T^{2/3}$            | Yes       |
|                      | WC         | $\sqrt{T}$ | $\sqrt{T}$           | No        |

WC: weakly-communicating.