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Motivation

In many real-world Reinforcement Learning (RL) applications, certain constraints need to
be enforced along with reward maximization.

Constrained Markov Decision Process (CMDP): while the finite-horizon setting or
discounted setting has received great attention, the infinite-horizon average-reward setting
is much much less understood.

2 / 19



Motivation

In many real-world Reinforcement Learning (RL) applications, certain constraints need to
be enforced along with reward maximization.

Constrained Markov Decision Process (CMDP): while the finite-horizon setting or
discounted setting has received great attention, the infinite-horizon average-reward setting
is much much less understood.

3 / 19



Our Contributions

We further extend our understanding of infinite-horizon average-reward CMDP.

Assumption Regret Constraint Violation Efficient

(Singh et al., 2020) Ergodic T 2/3 T 2/3 Yes

Ours

Ergodic
√
T Constant Yes

WC T 2/3 T 2/3 Yes

WC
√
T

√
T No

WC: weakly-communicating.
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Problem Formulation: Infinite-Horizon
Average-Reward CMDP

The model is defined as tuple M = (S,A, r , c , τ,P). We assume only P is unknown.

learner starts in an arbitrary initial state s1 ∈ S.
for t = 1, . . . ,T do

learner observes state st , takes action at ∈ A, and transits to the next state st+1 ∼
Pst ,at .
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Problem Formulation: Infinite-Horizon
Average-Reward CMDP

• Average utility function: Jπ,P,d(s) = lim infT→∞
1
T E[

∑T
t=1 d(st , at)|π,P, s1 = s].

• Optimal policy π⋆ is the solution of the following optimization problem:

argmax
π∈(∆A)S

Jπ,P,r (s), s.t. Jπ,P,c(s) ≤ τ,

and also Jπ
⋆,P,r (s) = J⋆ for some constant J⋆.

Learning Objective: ensure large reward while at the same time incurring small cost
relative to the threshold τ .

Regret: RT =
T∑
t=1

(J⋆ − r(st , at)), Constraint Violation: CT =
T∑
t=1

(c(st , at)− τ).
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Results for Ergodic MDPs

Main Ideas: perform policy optimization to update policy incrementally.

• Policy Evaluation: leverage ergodicity to estimate performance of learner’s policy.

• Policy Improvement: a novel value function estimator, and a new bonus term to deal
with the error of transition estimation in the value function estimator.

• Constraint Violation: primal-dual approach plus cost slack to achieve constant
constraint violation.

Theorem

The described algorithm ensures RT = Õ(
√
T ) and CT = Õ(1).

This improves the Õ(T 2/3) bounds of (Singh et al., 2020) in both metrics.
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Results for Weakly Communicating MDPs

Main Idea: Finite-horizon approximation similar to (Wei et al., 2020).

• Divide T time steps into K episodes, each of length H.

• Treat each episode as interacting with a finite-horizon MDP, and solve it through the
len of occupancy measure, where the expected reward and cost are both linear
functions and thus easy to optimize.
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Results for Weakly Communicating MDPs

Theorem

The described algorithm ensures RT = Õ(T 2/3) and CT = Õ(T 2/3).

Bottleneck of the Analysis: the span of value functions are bounded by H.

Observation: the span of the value functions of optimal policy are properly bounded by
smaller quantities.

Theorem

Incorporating the constraints on the span of the value functions ensures RT = Õ(
√
T )

and CT = Õ(
√
T ).

Limitation: the algorithm is inefficient.
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Bottleneck of the Analysis: the span of value functions are bounded by H.
Observation: the span of the value functions of optimal policy are properly bounded by
smaller quantities.

Theorem

Incorporating the constraints on the span of the value functions ensures RT = Õ(
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Conclusion

We further extend our understanding of infinite-horizon average-reward CMDP.

Assumption Regret Constraint Violation Efficient

(Singh et al., 2020) Ergodic T 2/3 T 2/3 Yes

Ours

Ergodic
√
T Constant Yes

WC T 2/3 T 2/3 Yes

WC
√
T

√
T No

WC: weakly-communicating.

19 / 19


