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Introduction

Clustering is a well-studied problem, e.g., Lloyd (1982), Banerjee
et al. (2005), Pediredla and Seelamantula (2011)

Prior works use specific cost functions and design tailored solvers

Banerjee et al. (2005) design an approach specific for Bregman costs

Pediredla and Seelamantula (2011) design an approach specific for
Huber loss

In Armacki et al. (2022), we propose a generic gradient based
approach to clustering

Our approach is applicable to a wide array of costs, e.g., a large class
of symmetric Bregman costs as well as non-Bregman costs, like Huber
loss
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Contributions

We propose a gradient based update rule, applicable to a wide range
of costs

We provide general convergence guarantees, independent of the
choice of cost or distance functions

We decouple the distance and cost functions, allowing for
development of novel clustering algorithms

Compared to Banerjee et al. (2005), our approach extends beyond
Bregman costs

Compared to other non-Bregman methods, e.g., Pediredla and
Seelamantula (2011), our approach provides strong convergence
guarantees to appropriately defined fixed points
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Problem Formulation

Input:

g : Rd × Rd 7→ R+ - symmetric distance function

Example: g(x , y) = ∥x − y∥

Example: g(x , y) =
√

(x − y)A(x − y), for any A ≻ 0

K ∈ N - desired number of clusters

D ⊂ Rd - (finite) dataset

py ∈ (0, 1) - weight assigned to point y ∈ D
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Problem Formulation - Cont’d

General clustering problem:

min
x∈RKd ,C∈C

J(x ,C ) =
∑
k∈[K ]

∑
y∈C(k)

py f (x(k), y) (GC)

f : Rd × Rd 7→ R+ - cost function, such that, for all
x , y , z ∈ Rd , g(x , y) ≤ g(z , y) =⇒ f (x , y) ≤ f (z , y)

Example: f (x , y) = g(x , y)2

Example: f (x , y) = Huber loss (g(x , y))

x(k) ∈ Rd - center estimate for the k-th cluster

C (k) - k-th cluster, in clustering C = (C (1), . . . ,C (K ))

C - the space of all K -partitions of D, i.e., for any C ∈ C, we have

|C | ≤ K , C (k) ∩ C (j) = ∅, for k ̸= j , ∪|C |
k=1C (k) = D
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Proposed Method

We propose a two step iterative algorithm to solve (GC)

The method performs the following steps, in each iteration
t = 0, 1, . . . :

1 Cluster assignment: for all y ∈ D, find k ∈ [K ], such that

g(xt(k), y) ≤ g(xt(j), y), ∀j ̸= k, (1)

and assign the point y to Ct+1(k).

2 Center update: for all k ∈ [K ], perform

xt+1(k) = xt(k)− α
∑

y∈Ct+1(k)

∇xt f (xt(k), y), (2)

where α > 0 is a fixed step-size.
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Main Results

Definition

A pair (x⋆,C⋆) is a fixed point of (1)-(2) if

1 Optimal clusters: for all k ∈ [K ] and y ∈ C⋆(k), we have
g(x⋆(k), y) ≤ g(x⋆(j), y)

2 Optimal centers: ∇xJ(x⋆,C⋆) = 0

Theorem

For the step-size choice α < 2
L and any initialization x0 ∈ RKd , the

sequence of points (xt ,Ct), generated by (1)-(2), converges to a fixed
point.
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Numerical Results - Data

We evaluate the performance of the gradient based clustering
methods on two real datasets, MNIST and Iris

For MNIST, we chose K = 7 clusters, corresponding to the first seven
digits, with n = 500 samples per digit

For Iris, we use the whole dataset, i.e., K = 3 clusters, corresponding
to different Iris flowers, with n = 50 samples per flower

MNIST digits Iris flowers. Credit: gadictos.com
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Numerical Results - Noiseless

We use the standard K -means cost with Euclidean distance, i.e.,
f (x , y) = ∥x − y∥2

Benchmark: Lloyd’s algorithm Lloyd (1982), Banerjee et al. (2005)

K -means on MNIST data, averaged across 20 runs K -means on Iris data, averaged across 20 runs
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Numerical Results - Noisy

We add zero mean Gaussian noise to p = 20% of data points, with
variance σ2 = 2

We use the Huber loss cost with Euclidean distance, i.e.,

f (x , y) =

{
∥x−y∥2

2 , ∥x − y∥ ≤ δ,

δ∥x − y∥ − δ2

2 , ∥x − y∥ > δ

Benchmark: Huber loss clustering from Pediredla and Seelamantula
(2011)

Huber loss on MNIST data, averaged across 20
runs

Huber loss on Iris data, averaged across 20 runs
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Conclusion

We propose a general gradient based method for clustering

The method encompasses a wide range of functions, such as a class
of Bregman divergences and Huber loss

The method provably converges to a properly defined fixed point,
with arbitrary initialization

Numerical results on real data show the method is competitive, in
comparison to existing methods
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