Gradient Based Clustering

Aleksandar Armacki®, Dragana Bajovic!, Dusan Jakovetict, Soummya
Karf

Carnegie Mellon University®, University of Novi Sad*

Thirty-ninth International Conference on Machine Learning,
Baltimore, Maryland, USA,
17. - 23. July, 2022

Electrical & Computer

{y ENGINEERING
Work of DB and DJ funded by H2020, GA 957337 and 871518. Work of AA and SK funded by NSF, GA=CNS-1837607.

Armacki, Bajovic, Jakovetic, Kar Gradient Based Clustering ICML 2022 1/13




Introduction

o Clustering is a well-studied problem, e.g., Lloyd (1982), Banerjee
et al. (2005), Pediredla and Seelamantula (2011)

@ Prior works use specific cost functions and design tailored solvers

o Banerjee et al. (2005) design an approach specific for Bregman costs

o Pediredla and Seelamantula (2011) design an approach specific for
Huber loss

@ In Armacki et al. (2022), we propose a generic gradient based
approach to clustering

@ Our approach is applicable to a wide array of costs, e.g., a large class
of symmetric Bregman costs as well as non-Bregman costs, like Huber
loss
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Contributions

@ We propose a gradient based update rule, applicable to a wide range
of costs

@ We provide general convergence guarantees, independent of the
choice of cost or distance functions

@ We decouple the distance and cost functions, allowing for
development of novel clustering algorithms

e Compared to Banerjee et al. (2005), our approach extends beyond
Bregman costs

@ Compared to other non-Bregman methods, e.g., Pediredla and
Seelamantula (2011), our approach provides strong convergence
guarantees to appropriately defined fixed points
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Bregman costs Non-Bregman

costs

K-means, /
Squared
Mahalanobis

Huber loss

\Symmetric distance functions
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Problem Formulation

o Input:
o g:RI xR — R, - symmetric distance function

o Bxample: g(x,y) = [Ix — ||

e Example: g(x,y) = /(x — y)A(x —y), for any A= 0

o K &€ N - desired number of clusters
o D C R? - (finite) dataset

e p, €(0,1) - weight assigned to point y € D
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Problem Formulation - Cont'd

@ General clustering problem:

min_ SO =3 3 pfxk)y)  (GO)

RKd,CeC
x€ < ke[K] yeC(k)

f:RY x RY — R, - cost function, such that, for all
x,y,z€RY, g(x,y) <glz,y) = f(x,y) < f(z,y)

o Example: f(x,y) = g(x,y)’
o Example: f(x,y) = Huber loss (g(x, y))
x(k) € R? - center estimate for the k-th cluster
C(k) - k-th cluster, in clustering C = (C(1),..., C(K))
o C - the space of all K-partitions of D, i.e., for any C € C, we have

ICl< K, Ck)NCH) =0, for k#j, U, C(k) =
(K)IEE‘N'GH‘\A&E

Armacki, Bajovic, Jakovetic, Kar Gradient Based Clustering ICML 2022 6/13



Proposed Method

e We propose a two step iterative algorithm to solve (GC)

@ The method performs the following steps, in each iteration
t=0,1,...:

@ Cluster assignment: for all y € D, find k € [K], such that
g(xe(k),y) < g(x(),y), Vi # k, (1)
and assign the point y to C1(k).
@ Center update: for all k € [K], perform
xep(k) = xe(k) —a D Vief(xe(k),y), (2)
y€Cey1(k)
where e > 0 is a fixed step-size.
Q) ERERERRR
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Main Results

Definition

A pair (x., C,) is a fixed point of (1)-(2) if
@ Optimal clusters: for all k € [K] and y € C,(k), we have

8(x(k),y) < g(x(),y)
@ Optimal centers: VyJ(x,, C) =0

For the step-size choice o < % and any initialization xy € RX9, the
sequence of points (x¢, C¢), generated by (1)-(2), converges to a fixed
point.
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Numerical Results - Data

@ We evaluate the performance of the gradient based clustering
methods on two real datasets, MNIST and Iris

@ For MNIST, we chose K = 7 clusters, corresponding to the first seven
digits, with n = 500 samples per digit

o For Iris, we use the whole dataset, i.e., K = 3 clusters, corresponding
to different Iris flowers, with n = 50 samples per flower

; S5V [
Iris Versicolor Iris Setosa Iris Virginica

MNIST digits Iris flowers. Credit: gadictos.com (K)/ Eﬁ‘éﬁ&%’ﬁlﬂ,\‘"g
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Numerical Results - Noiseless

@ We use the standard K-means cost with Euclidean distance, i.e.,
f(x,y) = [Ix = yl?

@ Benchmark: Lloyd's algorithm Lloyd (1982), Banerjee et al. (2005)
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Numerical Results - Noisy

@ We add zero mean Gaussian noise to p = 20% of data points, with
variance o2 = 2
o We use the Huber2 loss cost with Euclidean distance, i.e.,
e 2 L Ix =yl <3,
(X7y) - 52
Slx =yl =%, lIx—yl>d
@ Benchmark: Huber loss clustering from Pediredla and Seelamantula
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Conclusion

@ We propose a general gradient based method for clustering

@ The method encompasses a wide range of functions, such as a class
of Bregman divergences and Huber loss

@ The method provably converges to a properly defined fixed point,
with arbitrary initialization

@ Numerical results on real data show the method is competitive, in
comparison to existing methods
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