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Can we design deep models 1n a more principled way
and with theoretical guarantees?
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Optimization-Drived Learning (ODL)

. Both have “deep” structures h . But designed based on h
* Hierarchical propagation process * Numerical rules ( D,,,)
 Many layers  Experiences and data ( D)
\_ , \_
 Optimization  Neural networks
* Principals and priors « Experiences/heuristic

* White box

* Theoretical investigation
* Less flexibility and capability

- min f(u) + g(u)
translate - 1nto

knowledge optimization

« Black box
* Training data
« Weak interpretability and control
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Existing ODL Methods

Unrolling with Numerical Hyper-parameters (UNH) Embedded with Network Architectures (ENA)
min f(u) + g(u) min f(u) 4 g(u)
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Existing ODL Methods

Unrolling with Numerical Hyper-parameters (UNH) Embedded with Network Architectures (ENA)

min f(u) + g(u) min f(u) 4 g(u)
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Bilevel Meta Optimization (BMO)

We consider the following BMO formulation:

® A hierarchical optimization problem, where an optimization problem contains
another problem as the constraint

® More general than a traditional bilevel optimization problem, since the lower

level for training is the solution mapping of a broader fixed-point iteration

{ min /(u;w), s.t. u € Fix(7 (-, w)) }

ucel,wel)

o /:U x 2 — R is called the Hyper-Training objective.

o 7 :U x Q — U is called the Training solution mapping.
— T can be both Dy, and Dyt



BMO for Training and Hyper-training
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Mapping

U \[ Training solution mapping: 7 (u, w) ]

— u(w): Training variables

min {(u;w), s.t. u € Fix(7T (-, w))
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Algorithm and Convergence Analysis

Algorithm

Algorithm 1 The Solution Strategy of BMO

Require: Step sizes {si}, v and parameter
1: Initialize w° .

2: fort=1—= T do

3. Initialize u°.

4 for k=1— K do

5 vi =T (ufF 1wt ).

6: vE=uFt -5 leaauﬁ( Dwt=1)1,
7 ut = Proj; g, (vE 4+ (1 = p)vy).

8 end for

9 w'=w"l -y Zul W)

10: end for

H is a correction matrix related to 7, please see the paper for details

Convergence Analysis

* Approximation Quality
Theorem 1 Under appropriate conditions, we have

(1) any limit point (u,w) of the sequence
{(u (W), w’)} is a solution to the problem,
i.e., @ € argmin, qp(w) and i =T (1, ).

(2) inf,ecq pr(w) — inf,eq p(w) as K — oo.

« Stationary Analysis

Theorem 2 Let w® be an e -stationary point of
o (w), i.e., |[Vog(w®)|| = ex. Then under appro-
priate conditions, if ex — 0, we have that any limit
point w of the sequence {wK} 18 a stationary point

of v, i.e., Vp(w) = 0.



Experiments

Toy Example:

_ —~—DLADMM|| — ——LADMM
g 04 —~LADMM || 203 —~BMO |
=03 —-—BMO = ——Train :
> =02 [ tew * Sparse Coding
1 02 |
o 701 « Joint convergence
2 VT = S~ L .
olan . . . | otz | | | Tywam « Convergence on untrained layers
2 4 6 8 10 12 14 10 20 30 40
Iteration of u [teration of u
Noise level oc=1% o=3% Image prOCESSIHg:
Image |Butterfly Leaves Starfish |Butterfly Leaves Starfish .
EPLL | 20.55 1922 2484 | 18.64 17.54 2247 * Image Deconvolution
FDN | 2740 2651 2748 | 2427 2353 24.71
IRCNN | 32.74 3322 3353 | 2853 2845 28.42 e Rain Streak Removal
IRCNN+ | 3248 33.59 32.18 | 2840 28.14 28.20
DPIR | 3418 35.12 3391 | 2945 3027 29.46
BMO | 33.67 3539 3398 | 2946 30.69 29.64

More results are in the paper.
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33.76/0.945 26.04/0.811 37.39/0.978 36.72/0.980 39.89/0.982 42.49/0.991
Ground Truth DDN JORDER(Yang PReNet(Ren MPRNet(Zamir BMO

(Fu et al., 2017b) et al., 2019) etal., 2019) etal., 2021)



Take Home Messages

- We establish a new formulation as a general form of various ODL methods.

- BMO optimizes training and hyper-training variables simultaneously to obtain
the true solution.

- BMO provides strict essential convergence analysis of both training and hyper-
training variables.



