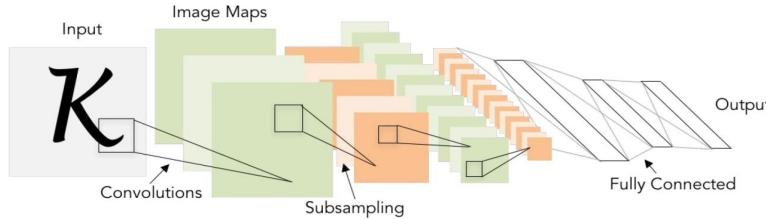


Optimization-Derived Learning with Essential Convergence Analysis of Training and Hyper-training

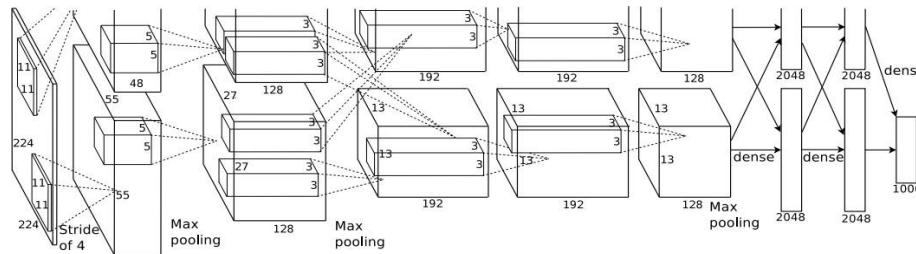
Risheng Liu, Xuan Liu, Shangzhi Zeng, Jin Zhang, Yixuan Zhang

ICML2022

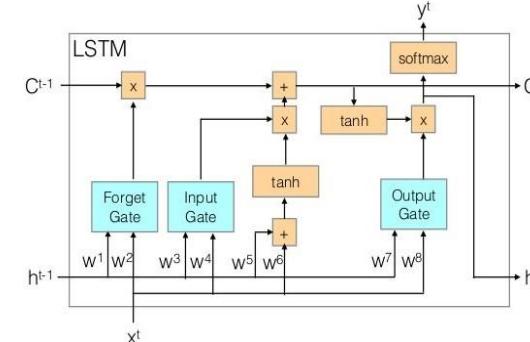
Existing Deep Learning Models



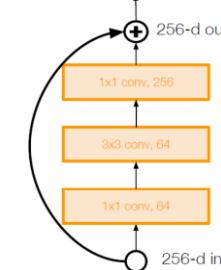
LeNet-5



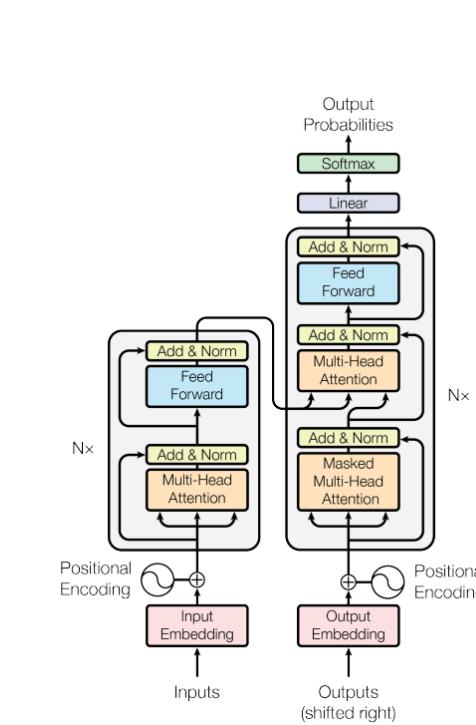
AlexNet



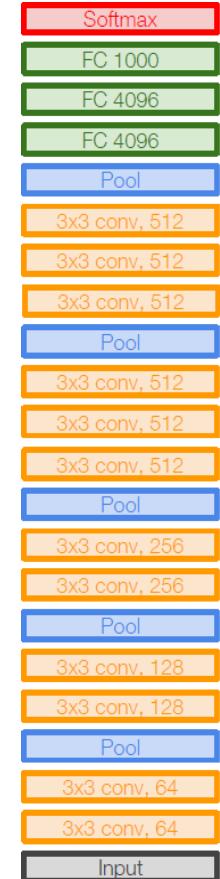
LSTM



ResNet



Transformer



VGG16

Can we design deep models in a more **principled** way and with **theoretical guarantees**?

Optimization-Driven Learning (ODL)

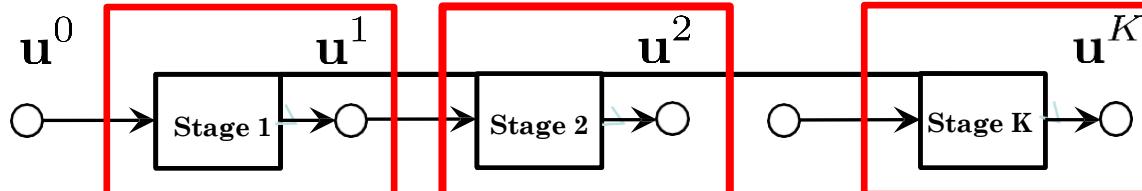
- Both have “**deep**” structures
 - Hierarchical propagation process
 - Many layers
- Optimization
 - Principals and priors
 - White box
 - Theoretical investigation
 - **Less flexibility and capability**

translate

knowledge

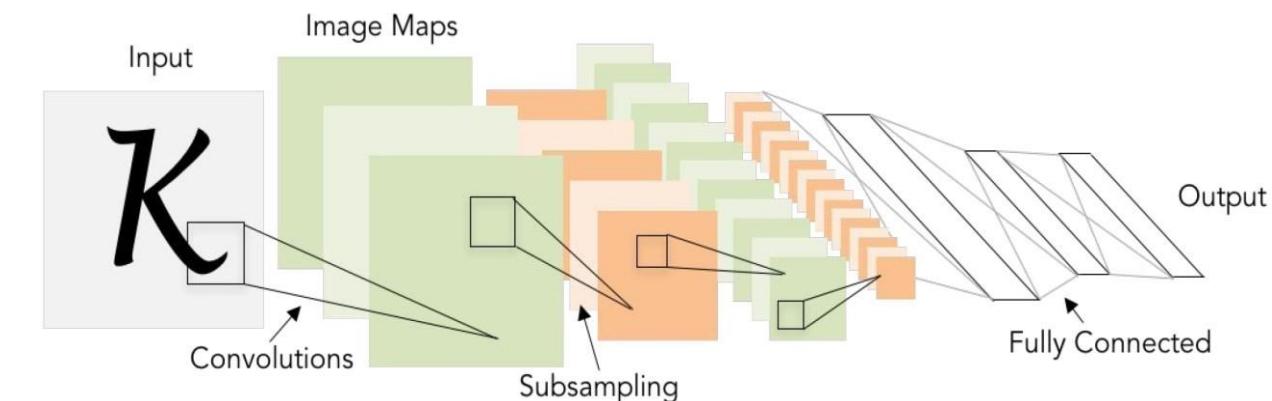
into

$$\min_{\mathbf{u}} f(\mathbf{u}) + g(\mathbf{u})$$



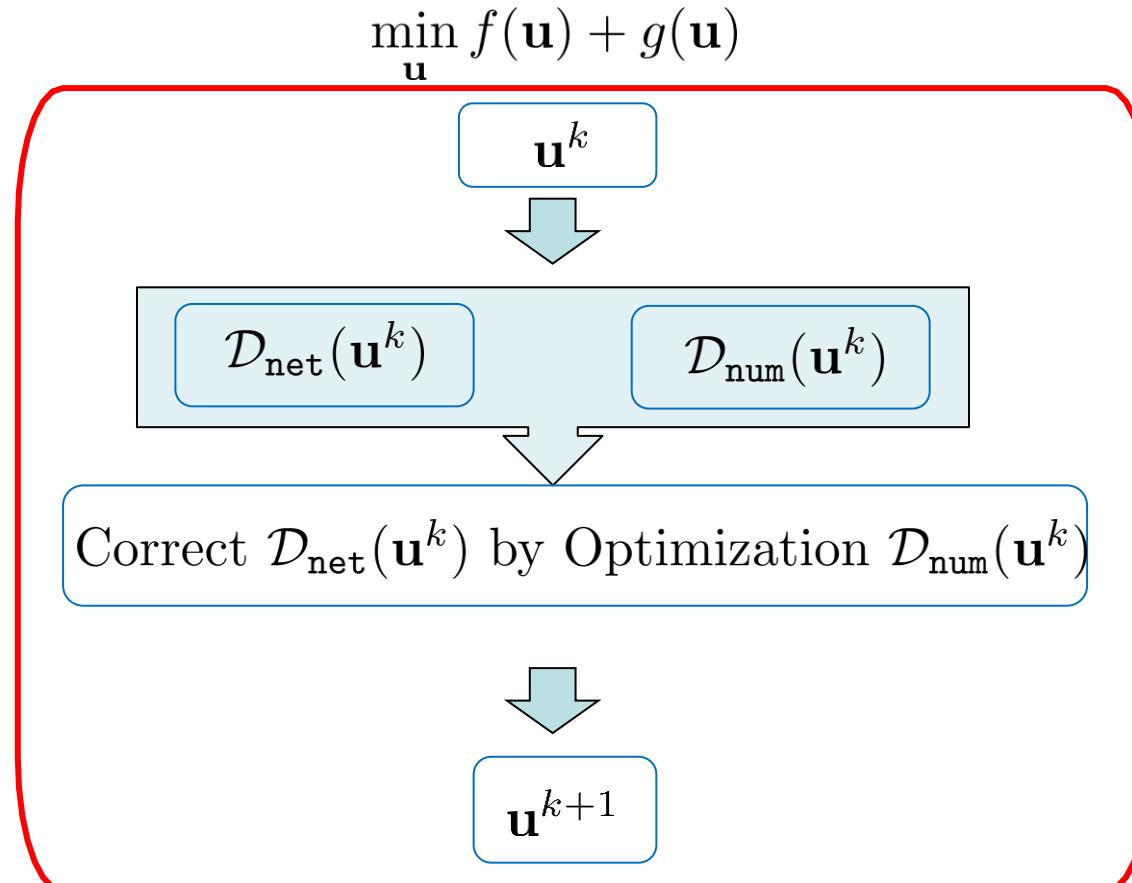
- But designed based on
 - Numerical rules (\mathcal{D}_{num})
 - Experiences and data (\mathcal{D}_{net})

- Neural networks
 - Experiences/heuristic
 - Black box
 - Training data
 - **Weak interpretability and control**



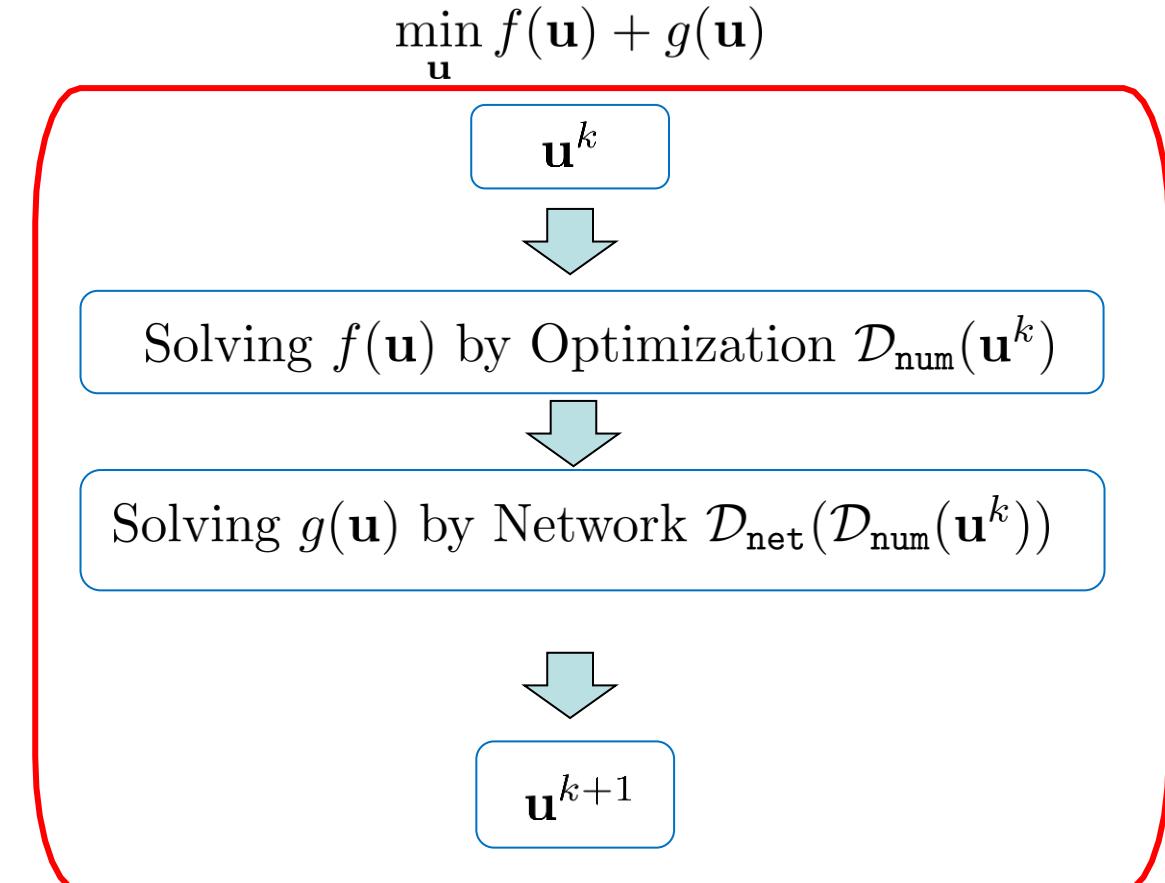
Existing ODL Methods

Unrolling with Numerical Hyper-parameters (UNH)



Minimizing Training Objective $f + g$
Ignore Hyper-Training Objective ℓ

Embedded with Network Architectures (ENA)



Minimizing Hyper-Training Objective ℓ
Ignore Training Objective $f + g$

Existing ODL Methods

Unrolling with Numerical Hyper-parameters (UNH)

Embedded with Network Architectures (ENA)

$$\min_{\mathbf{u}} f(\mathbf{u}) + g(\mathbf{u})$$

$$\min_{\mathbf{u}} f(\mathbf{u}) + g(\mathbf{u})$$

\mathbf{u}^k

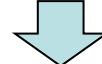
\mathbf{u}^k

**Separate Training and
Hyper-training**

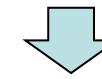
Correct \mathcal{D}_{net}

$\mathcal{D}_{\text{num}}(\mathbf{u}^k)$

$\mathcal{D}_{\text{num}}(\mathbf{u}^k))$



\mathbf{u}^{k+1}



\mathbf{u}^{k+1}

Minimizing Training Objective $f + g$
Ignore Hyper-Training Objective ℓ

Minimizing Hyper-Training Objective ℓ
Ignore Training Objective $f + g$

Bilevel Meta Optimization (BMO)

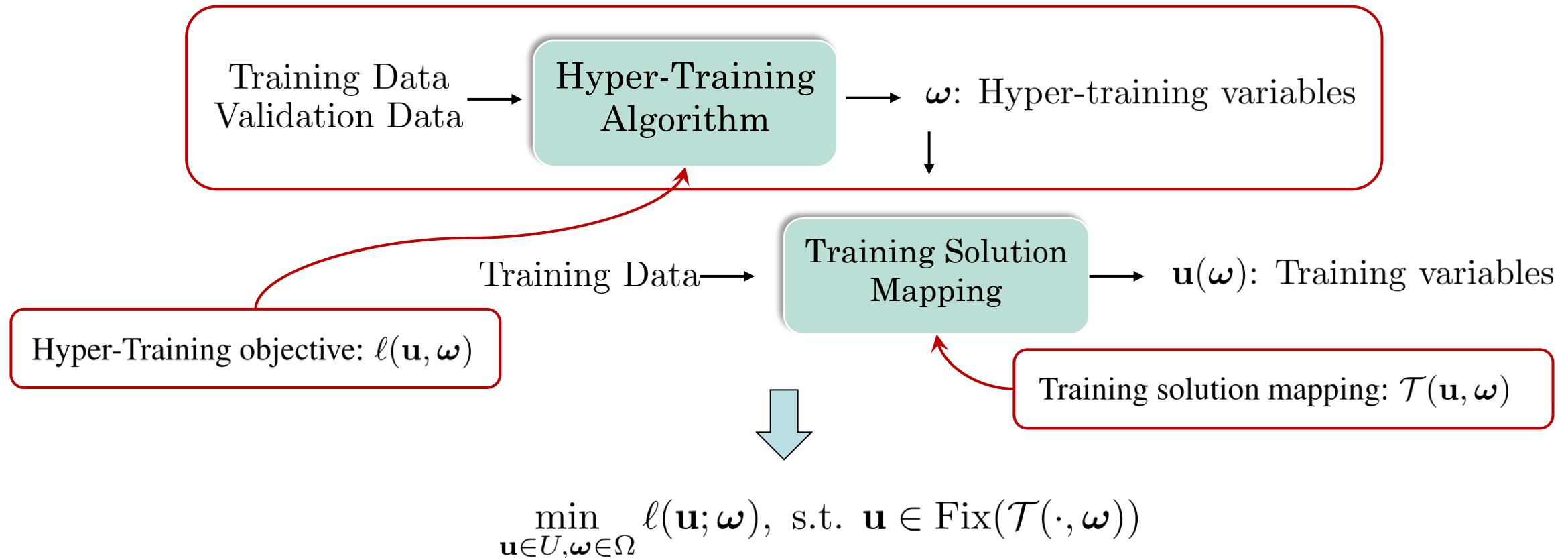
We consider the following **BMO** formulation:

- A **hierarchical optimization** problem, where an optimization problem contains another problem **as the constraint**
- More **general** than a traditional bilevel optimization problem, since the lower level for training is the solution mapping of a broader **fixed-point** iteration

$$\min_{\mathbf{u} \in U, \boldsymbol{\omega} \in \Omega} \ell(\mathbf{u}; \boldsymbol{\omega}), \text{ s.t. } \mathbf{u} \in \text{Fix}(\mathcal{T}(\cdot, \boldsymbol{\omega}))$$

- $\ell : U \times \Omega \rightarrow \mathbb{R}$ is called the Hyper-Training objective.
- $\mathcal{T} : U \times \Omega \rightarrow U$ is called the Training solution mapping.
 - \mathcal{T} can be both \mathcal{D}_{num} and \mathcal{D}_{net} .

BMO for Training and Hyper-training



Joint Convergence

Algorithm and Convergence Analysis

- **Algorithm**

Algorithm 1 The Solution Strategy of BMO

Require: Step sizes $\{s_k\}$, γ and parameter μ

- 1: Initialize ω^0 .
- 2: **for** $t = 1 \rightarrow T$ **do**
- 3: Initialize \mathbf{u}^0 .
- 4: **for** $k = 1 \rightarrow K$ **do**
- 5: $\mathbf{v}_l^k = \mathcal{T}(\mathbf{u}^{k-1}, \omega^{t-1})$.
- 6: $\mathbf{v}_u^k = \mathbf{u}^{k-1} - s_k \mathbf{H}_\omega^{-1} \frac{\partial}{\partial \mathbf{u}} \ell(\mathbf{u}^{k-1}, \omega^{t-1})$.¹.
- 7: $\mathbf{u}^k = \text{Proj}_{U, \mathbf{H}_\omega} (\mu \mathbf{v}_u^k + (1 - \mu) \mathbf{v}_l^k)$.
- 8: **end for**
- 9: $\omega^t = \omega^{t-1} - \gamma \frac{\partial}{\partial \omega} \ell(\mathbf{u}^K, \omega^{t-1})$.
- 10: **end for**

¹ \mathbf{H} is a correction matrix related to \mathcal{T} , please see the paper for details

- **Convergence Analysis**

- **Approximation Quality**

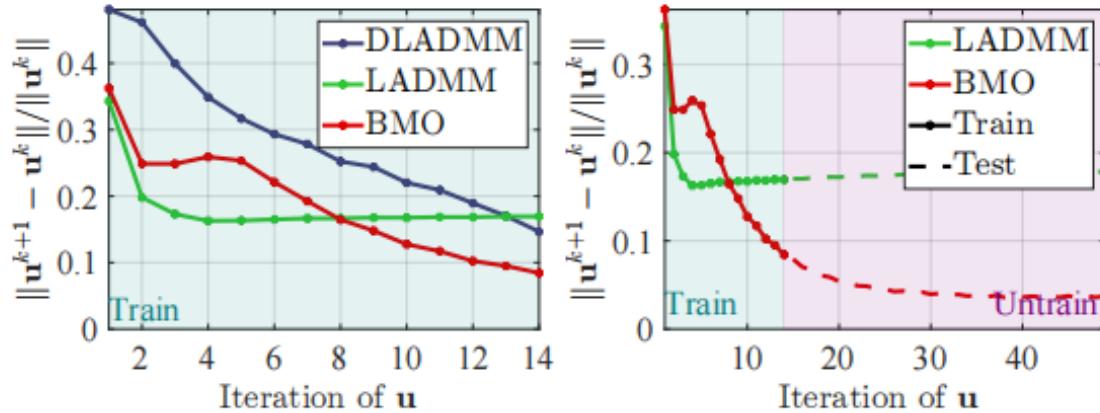
Theorem 1 *Under appropriate conditions, we have*

- (1) *any limit point $(\bar{\mathbf{u}}, \bar{\omega})$ of the sequence $\{(\mathbf{u}^K(\omega^K), \omega^K)\}$ is a solution to the problem, i.e., $\bar{\omega} \in \text{argmin}_{\omega \in \Omega} \varphi(\omega)$ and $\bar{\mathbf{u}} = \mathcal{T}(\bar{\mathbf{u}}, \bar{\omega})$.*
- (2) $\inf_{\omega \in \Omega} \varphi_K(\omega) \rightarrow \inf_{\omega \in \Omega} \varphi(\omega)$ as $K \rightarrow \infty$.

- **Stationary Analysis**

Theorem 2 *Let ω^K be an ε_K -stationary point of $\varphi_K(\omega)$, i.e., $\|\nabla \varphi_K(\omega^K)\| = \varepsilon_K$. Then under appropriate conditions, if $\varepsilon_K \rightarrow 0$, we have that any limit point $\bar{\omega}$ of the sequence $\{\omega^K\}$ is a stationary point of φ , i.e., $\nabla \varphi(\bar{\omega}) = 0$.*

Experiments



Noise level	$\sigma = 1\%$			$\sigma = 3\%$		
	Image	Butterfly	Leaves	Starfish	Butterfly	Leaves
EPLL	20.55	19.22	24.84	18.64	17.54	22.47
FDN	27.40	26.51	27.48	24.27	23.53	24.71
IRCNN	32.74	33.22	33.53	28.53	28.45	28.42
IRCNN+	32.48	33.59	32.18	28.40	28.14	28.20
DPIR	34.18	35.12	33.91	29.45	30.27	29.46
BMO	33.67	35.39	33.98	29.46	30.69	29.64

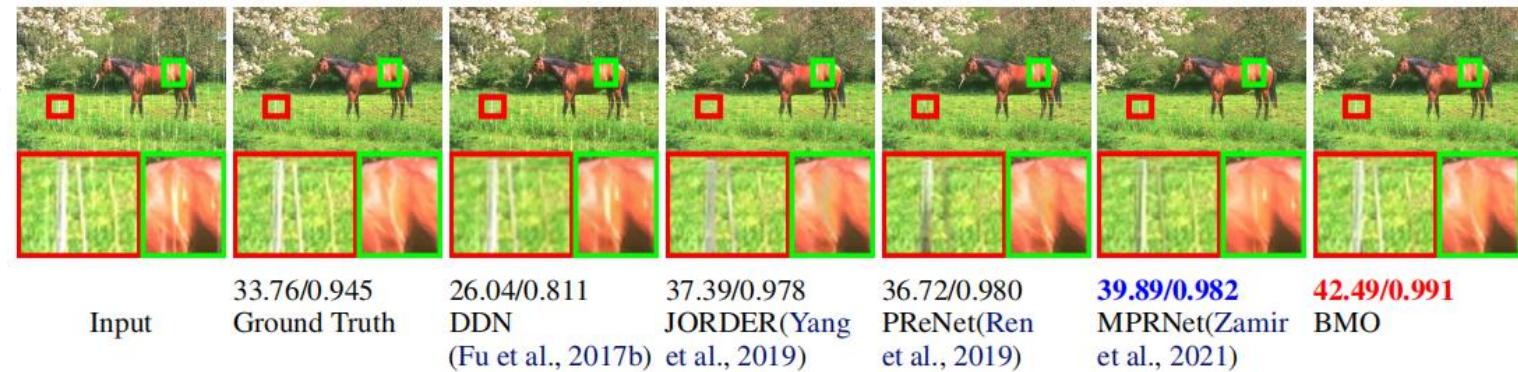
More results are in the paper.

Toy Example:

- Sparse Coding
 - **Joint** convergence
 - Convergence on **untrained** layers

Image processing:

- Image Deconvolution
- Rain Streak Removal



Take Home Messages

- We establish a new formulation as a general form of various ODL methods.
- BMO optimizes training and hyper-training variables simultaneously to obtain the true solution.
- BMO provides strict essential convergence analysis of both training and hyper-training variables.