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Clustering Applications

- Partition
- Loan applications
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Centroid-Based Clusterings

- k-means
- k-medians
- k-center
- Unfair treatments

Global objective function
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I do not belong :( 

I WANT TO BE CLOSE TO MY PEERS!

Challenge
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Fairness Notions

- Dwork et. al. (ITCS’12)
- Similar individuals should be treated similarly

- Jung, Kannan, and Lutz (FORC’20)
- Center in neighborhood

- Kleindessner, Awasthi, and Morgenstern (ICML’19)
- Different demographics are well represented

- Chen et. al. (ICML’19)
- No large portion of points can form another cluster

- Many others (MV, ICML’20), (NC, NeurIPS’21), (VY, AISTATS’22) …
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Problem Statement

- Given data points D and an integer k
- Can we find a happy clustering of k clusters?
- No global objective involved (yet)
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1-dimension

not CONTIGUOUS!
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1-dimension

AliceBob

I’m not happy!
Me 

neither!

Alice is not happy implies that Bob is also not happy!

We want folks at the border to be happy
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General Metric: Algorithm

- Embed the input space
- Find a clustering from the tree
- Output the corresponding clustering!
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The expectation is over a distribution of trees :( 
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Summary

- Positive Results
- 1D weighted instance?
- Trees for 2 clusters k > 2? 
- General Metric Space better guarantee?

- Negative Results
- Impossibility hardness of approximation?
- NP-hardness

- Experiments guarantee for k-means++?



Thank you!


