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What can generative models do?

StyleGAN v2, CVPR 20 BigGAN, ICLR 19 SAGAN, ICML 19

Realistic? —»  Useful!



What can generative models do?
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Leverage knowledge across multiple tasks: beyond a shared encoder

Semantic
segmentation
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Multi-task learning with generative modeling:
 Facilitate the flow of knowledge across tasks
* Synthesize data as augmentation to benefit multiple tasks




Naive solution: synthesize paired image and pixel-wise annotations
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Key challenge: difficult to synthesize images with pixel-wise annotations
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Pilot study: can an oracle annotator help?
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How to utilize the synthesized examples?

(1) Refinement
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Downstream signal gives guidance for synthesizing data!
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How to utilize the synthesized examples?

(2) Self-Supervision
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How to utilize the synthesized examples?
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Multi-task oriented generative modeling (MGM)
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Performance improvements with MGM
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Performance improvements with MGM

Test Images
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Code Available

Thank you!

Welcome to our poster (Session 2 Track 3)!



