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Contribution of This Paper

Central Questions

[Q1] How is ℒ(𝜃𝜃; 𝜆𝜆, 𝜖𝜖) connected to log-likelihood?
[Q2] How to optimize ℒ(𝜃𝜃; 𝜆𝜆, 𝜖𝜖) well?
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• 𝑝𝑝𝑡𝑡𝜃𝜃 is the marginal distribution of the generative process at time 𝑡𝑡
• This corollary holds only when 𝜆𝜆 = 𝑔𝑔2
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Soft Truncation: Alternative Optimization Method of 𝓛𝓛(𝜽𝜽;𝝀𝝀, 𝝐𝝐)
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𝑇𝑇 𝑑𝑑𝑑𝑑 for 𝜏𝜏 ∼ 𝑃𝑃(𝜏𝜏) in every mini-batch update
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• From ℒ 𝜃𝜃; 𝜆𝜆, 𝜖𝜖 = 𝔼𝔼𝑃𝑃𝜆𝜆(𝜏𝜏) ℒ 𝜃𝜃;𝑔𝑔2, 𝜏𝜏 , Soft Truncation is an optimization method of general-weighted loss
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Soft Truncation: Maximum Perturbed Likelihood Estimation

Central Questions

[Q1] How is ℒ(𝜃𝜃; 𝜆𝜆, 𝜖𝜖) connected to log-likelihood?
[Q2] How to optimize ℒ(𝜃𝜃; 𝜆𝜆, 𝜖𝜖) well?

• Question 2
• Vanilla training can be framed by Maximum Likelihood Estimation by Song21Maximum only when 𝜆𝜆 = 𝑔𝑔2

•
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Soft Truncation: Maximum Perturbed Likelihood Estimation

Central Questions

[Q1] How is ℒ(𝜃𝜃; 𝜆𝜆, 𝜖𝜖) connected to log-likelihood?
[Q2] How to optimize ℒ(𝜃𝜃; 𝜆𝜆, 𝜖𝜖) well?

• Question 2
• Vanilla training can be framed by Maximum Likelihood Estimation by Song21Maximum only when 𝜆𝜆 = 𝑔𝑔2

•
• Soft Truncation can be framed by Maximum Perturbed Likelihood Estimation

• Actual optimization loss at each mini-batch update
•

• Loss averaged by mini-batches
•

• Variational bound at each mini-batch is tight
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Experimental Result

• Implications
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Experimental Result

• Implications
• Soft Truncation is a better optimization method against the vanilla optimization
• Soft Truncation significantly solves the NLL-FID trade-off

• Soft Truncation achieves comparable FID as much as the case of variance weighting
• Soft Truncation keeps NLL at the equivalent level compared to likelihood weighting

• Soft Truncation is universally applicable to any SDEs and network architectures

Nonlinear SDE

Result on CelebA 64×64

Result on CIFAR-10
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Experimental Result
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Thank you!

29


	Soft Truncation:� A Universal Training Technique of Score-based Diffusion Model for High Precision Score Estimation
	슬라이드 번호 2
	슬라이드 번호 3
	슬라이드 번호 4
	슬라이드 번호 5
	슬라이드 번호 6
	슬라이드 번호 7
	슬라이드 번호 8
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	슬라이드 번호 24
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	슬라이드 번호 28
	Thank you!

