ICML22 Spotlight Presentation

Soft Truncation:

A Universal Training Technique of Score-based Diffusion Model for High Precision Score Estimation

Dongjun Kim¹ Seungjae Shin¹ Kyungwoo Song² Wanmo Kang¹ Il-Chul Moon¹³

- Forward Diffusion
 - $d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t) dt + g(t) d\mathbf{w}_t$

	$\mathbf{f}(x_t,t)$	$\boldsymbol{g}(x_t,t)$	$p_{0t}(x_t x_0)$
VESDE	0	$\sigma_{min} \left(\frac{\sigma_{max}}{\sigma_{min}} \right)^t \sqrt{\frac{\sigma_{max}}{\sigma_{min}}}$	$\mathcal{N}(x_t; x_0, \sigma_{VE}^2(t)I)$
VPSDE	$-\frac{1}{2}\beta(t)x_t$	$\sqrt{eta(t)}$	$\mathcal{N}(x_t, \mu_{VP}(t)x_0, \sigma_{VP}^2(t)I)$

Forward Diffusion

Reverse & Generative Diffusion

- $d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t) dt + g(t) d\mathbf{w}_t$
- Reverse Diffusion
 - $d\mathbf{x}_t = \left[\mathbf{f}(\mathbf{x}_t, t) g^2(t) \nabla \log p_t(\mathbf{x}) \right] d\bar{t} + g(t) d\bar{\mathbf{w}}_t$

	$\mathbf{f}(x_t,t)$	$\boldsymbol{g}(x_t,t)$	$p_{0t}(x_t x_0)$
VESDE	0	$\sigma_{min} \left(\frac{\sigma_{max}}{\sigma_{min}} \right)^t \sqrt{\frac{\sigma_{max}}{\sigma_{min}}}$	$\mathcal{N}(x_t; x_0, \sigma_{VE}^2(t)I)$
VPSDE	$-\frac{1}{2}\beta(t)x_t$	$\sqrt{eta(t)}$	$\mathcal{N}(x_t, \mu_{VP}(t)x_0, \sigma_{VP}^2(t)I)$

Forward Diffusion

Reverse & Generalive

•
$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t) dt + g(t) d\mathbf{w}_t$$

- Reverse Diffusion
 - $d\mathbf{x}_t = \left[\mathbf{f}(\mathbf{x}_t, t) g^2(t) \nabla \log p_t(\mathbf{x}) \right] d\bar{t} + g(t) d\bar{\mathbf{w}}_t$
- Generative Diffusion
 - $d\mathbf{x}_t = \left[\mathbf{f}(\mathbf{x}_t, t) g^2(t)\mathbf{s}_{\theta}(\mathbf{x}_t, t)\right] d\bar{t} + g(t) d\bar{\mathbf{w}}_t$

	$\mathbf{f}(x_t,t)$	$\boldsymbol{g}(x_t,t)$	$p_{0t}(x_t x_0)$
VESDE	0	$\sigma_{min} \left(\frac{\sigma_{max}}{\sigma_{min}} \right)^t \sqrt{\frac{\sigma_{max}}{\sigma_{min}}}$	$\mathcal{N}(x_t; x_0, \sigma_{VE}^2(t)I)$
VPSDE	$-\frac{1}{2}\beta(t)x_t$	$\sqrt{eta(t)}$	$\mathcal{N}(x_t, \mu_{VP}(t)x_0, \sigma_{VP}^2(t)I)$

Forward Diffusion

•
$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t) dt + g(t) d\mathbf{w}_t$$

- Reverse Diffusion
 - $d\mathbf{x}_t = \left[\mathbf{f}(\mathbf{x}_t, t) g^2(t) \nabla \log p_t(\mathbf{x}) \right] d\bar{t} + g(t) d\bar{\mathbf{w}}_t$
- Generative Diffusion

•
$$d\mathbf{x}_t = \left[\mathbf{f}(\mathbf{x}_t, t) - g^2(t) \mathbf{s}_{\theta}(\mathbf{x}_t, t) \right] d\bar{t} + g(t) d\bar{\mathbf{w}}_t$$

Scor	e Estimation Loss	T
•	$\mathcal{L}(\boldsymbol{\theta}; \lambda, \epsilon) = \frac{1}{2}$	$\int_{0}^{T} \lambda(t) \mathbb{E}_{p_{r}(\mathbf{x}_{0})} \mathbb{E}_{p_{0t}(\mathbf{x}_{t} \mathbf{x}_{0})} \left[\ \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_{t},t) - \nabla \log p_{0t}(\mathbf{x}_{t} \mathbf{x}_{0}) \ _{2}^{2} \right] dt$

	$\mathbf{f}(x_t, t)$	$\boldsymbol{g}(x_t,t)$	$p_{0t}(x_t x_0)$
VESDE	0	$\sigma_{min} \left(\frac{\sigma_{max}}{\sigma_{min}} \right)^t \sqrt{\frac{\sigma_{max}}{\sigma_{min}}}$	$\mathcal{N}(x_t; x_0, \sigma_{VE}^2(t)I)$
VPSDE	$-\frac{1}{2}\beta(t)x_t$	$\sqrt{eta(t)}$	$\mathcal{N}(x_t, \mu_{VP}(t)x_0, \sigma_{VP}^2(t)I)$

Contribution of This Paper

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 1
 - Partial answer to Q1
 - [Corollary 1 (Song21Maximum)] $\mathbb{E}_{\mathbf{x}_0} \left[-\log p_0^{\boldsymbol{\theta}}(\mathbf{x}_0) \right] \leq \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{\lambda} = \boldsymbol{g}^2, \epsilon)$
 - p_t^{θ} is the marginal distribution of the generative process at time t
 - This corollary holds only when $\lambda = g^2$

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 1
 - Partial answer to Q1
 - [Corollary 1 (Song21Maximum)] $\mathbb{E}_{\mathbf{x}_0} \left[-\log p_0^{\boldsymbol{\theta}}(\mathbf{x}_0) \right] \leq \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{\lambda} = \boldsymbol{g}^2, \epsilon) \iff D_{KL}(p_r || p_0^{\boldsymbol{\theta}}) \leq \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{\lambda} = \boldsymbol{g}^2, \epsilon)$
 - p_t^{θ} is the marginal distribution of the generative process at time t
 - This corollary holds only when $\lambda = g^2$

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 1
 - Partial answer to Q1
 - [Corollary 1 (Song21Maximum)] $\mathbb{E}_{\mathbf{x}_0} \left[-\log p_0^{\boldsymbol{\theta}}(\mathbf{x}_0) \right] \leq \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{\lambda} = \boldsymbol{g}^2, \epsilon) \iff D_{KL}(p_r || p_0^{\boldsymbol{\theta}}) \leq \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{\lambda} = \boldsymbol{g}^2, \epsilon)$
 - p_t^{θ} is the marginal distribution of the generative process at time t
 - This corollary holds only when $\lambda = g^2$
 - Complete answer to Q1

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 1
 - Partial answer to Q1
 - [Corollary 1 (Song21Maximum)] $\mathbb{E}_{\mathbf{x}_0} \left[-\log p_0^{\boldsymbol{\theta}}(\mathbf{x}_0) \right] \leq \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{\lambda} = g^2, \epsilon) \iff D_{KL}(p_r || p_0^{\boldsymbol{\theta}}) \leq \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{\lambda} = g^2, \epsilon)$
 - p_t^{θ} is the marginal distribution of the generative process at time t
 - This corollary holds only when $\lambda = g^2$
 - Complete answer to Q1
 - [Theorem 1] $\mathbb{E}_{\mathbb{P}_{\lambda}(\tau)} \Big[\mathbb{E}_{\mathbf{x}_{\tau}} \Big[-\log p_{\tau}^{\boldsymbol{\theta}}(\mathbf{x}_{\tau}) \Big] \Big] \leq \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{\lambda}, \epsilon) \iff \mathbb{E}_{\mathbb{P}_{\lambda}(\tau)} \Big[D_{KL}(p_{\tau} || p_{\tau}^{\boldsymbol{\theta}}) \Big] \leq \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{\lambda}, \epsilon)$

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

Dataset	Model	NLL	FID
CIFAR-10	DDPM++ (VP, NLL)	3.03	6.70
	+ Soft Truncation	3.03	3.45
	DDPM++ (VP, FID)	3.21	3.90
ImageNet32	DDPM++ (VP, NLL)	3.92	12.68
	+ Soft Truncation	3.90	8.42
	DDPM++ (VP, FID)	3.95	9.22

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 2
 - [Observation 1] Small diffusion time contributes the most of the integration in $\mathcal{L}(\theta; g^2, \epsilon)$

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 2
 - [Observation 1] Small diffusion time contributes the most of the integration in $\mathcal{L}(\theta; \lambda, \epsilon)$

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 2
 - [Observation 1] Small diffusion time contributes the most of the integration in $\mathcal{L}(\theta; \lambda, \epsilon)$

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 2
 - [Observation 1] Small diffusion time contributes the most of the integration in $\mathcal{L}(\theta; \lambda, \epsilon)$
 - [Observation 2] Large diffusion time contributes to the global sample fidelity

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 2
 - [Observation 1] Small diffusion time contributes the most of the integration in $\mathcal{L}(\theta; \lambda, \epsilon)$
 - [Observation 2] Large diffusion time contributes to the global sample fidelity
 - ⇒ A better optimization method will bring an enhanced score accuracy on large diffusion time

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 2
 - [Observation 1] Small diffusion time contributes the most of the integration in $\mathcal{L}(\theta; \lambda, \epsilon)$
 - [Observation 2] Large diffusion time contributes to the global sample fidelity
 - ⇒ A better optimization method will bring an enhanced score accuracy on large diffusion time
 - (Soft Truncation) Optimize $\mathcal{L}(\theta; g^2, \tau) = \int_{\tau}^{T} dt$ for $\tau \sim P(\tau)$ in every mini-batch update
 - Softens the static hyper-parameter ϵ with a random variable $\tau \sim P(\tau)$

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 2
 - [Observation 1] Small diffusion time contributes the most of the integration in $\mathcal{L}(\theta; \lambda, \epsilon)$
 - [Observation 2] Large diffusion time contributes to the global sample fidelity
 - ⇒ A better optimization method will bring an enhanced score accuracy on large diffusion time
 - (Soft Truncation) Optimize $\mathcal{L}(\theta; g^2, \tau) = \int_{\tau}^{T} dt$ for $\tau \sim P(\tau)$ in every mini-batch update
 - Softens the static hyper-parameter ϵ with a random variable $\tau \sim P(\tau)$
 - From $\mathcal{L}(\theta; \lambda, \epsilon) = \mathbb{E}_{P_{\lambda}(\tau)}[\mathcal{L}(\theta; g^2, \tau)]$, Soft Truncation is an optimization method of general-weighted loss

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 2
 - Vanilla training can be framed by Maximum Likelihood Estimation by Song21Maximum only when $\lambda = g^2$
 - $\mathbb{E}_{\mathbf{x}_0} \left[-\log p_0^{\boldsymbol{\theta}}(\mathbf{x}_0) \right] \leq \mathcal{L}(\boldsymbol{\theta}; \lambda = g^2, \epsilon)$

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 2
 - Vanilla training can be framed by Maximum Likelihood Estimation by Song21Maximum only when $\lambda = g^2$
 - $\mathbb{E}_{\mathbf{x}_0} \left[-\log p_0^{\boldsymbol{\theta}}(\mathbf{x}_0) \right] \leq \mathcal{L}(\boldsymbol{\theta}; \lambda = g^2, \epsilon)$
 - Soft Truncation can be framed by Maximum Perturbed Likelihood Estimation

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 2
 - Vanilla training can be framed by Maximum Likelihood Estimation by Song21Maximum only when $\lambda = g^2$

•
$$\mathbb{E}_{\mathbf{x}_0} \left[-\log p_0^{\boldsymbol{\theta}}(\mathbf{x}_0) \right] \leq \mathcal{L}(\boldsymbol{\theta}; \lambda = g^2, \epsilon)$$

- Soft Truncation can be framed by Maximum Perturbed Likelihood Estimation
 - Actual optimization loss at each mini-batch update
 - $D_{KL}(p_{\tau}||p_{\tau}^{\boldsymbol{\theta}}) \leq \mathcal{L}(\boldsymbol{\theta};g^2,\tau)$

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

- Question 2
 - Vanilla training can be framed by Maximum Likelihood Estimation by Song21Maximum only when $\lambda = g^2$
 - $\mathbb{E}_{\mathbf{x}_0} \left[-\log p_0^{\boldsymbol{\theta}}(\mathbf{x}_0) \right] \leq \mathcal{L}(\boldsymbol{\theta}; \lambda = g^2, \epsilon)$
 - Soft Truncation can be framed by **Maximum Perturbed Likelihood Estimation**
 - Actual optimization loss at each mini-batch update
 - $D_{KL}(p_{\tau}||p_{\tau}^{\boldsymbol{\theta}}) \leq \mathcal{L}(\boldsymbol{\theta};g^2,\tau)$
 - Loss averaged by mini-batches Theorem 1
 - $\mathbb{E}_{\mathbb{P}_{\lambda}(\tau)} [D_{KL}(p_{\tau} || p_{\tau}^{\theta})] \leq \mathcal{L}(\theta; \lambda, \epsilon) = \mathbb{E}_{\mathbb{P}_{\lambda}(\tau)} [\mathcal{L}(\theta; g^{2}, \tau)]$

Central Questions

[Q1] How is $\mathcal{L}(\theta; \lambda, \epsilon)$ connected to log-likelihood?

[**Q2**] How to optimize $\mathcal{L}(\theta; \lambda, \epsilon)$ well?

- Question 2
 - Vanilla training can be framed by Maximum Likelihood Estimation by Song21Maximum only when $\lambda = g^2$

•
$$\mathbb{E}_{\mathbf{x}_0} \left[-\log p_0^{\boldsymbol{\theta}}(\mathbf{x}_0) \right] \leq \mathcal{L}(\boldsymbol{\theta}; \lambda = g^2, \epsilon)$$

- Soft Truncation can be framed by Maximum Perturbed Likelihood Estimation
 - Actual optimization loss at each mini-batch update

•
$$D_{KL}(p_{\tau}||p_{\tau}^{\boldsymbol{\theta}}) \leq \mathcal{L}(\boldsymbol{\theta};g^2,\tau)$$

Loss averaged by mini-batches

•
$$\mathbb{E}_{\mathbb{P}_{\lambda}(\tau)} [D_{KL}(p_{\tau} || p_{\tau}^{\theta})] \leq \mathcal{L}(\theta; \lambda, \epsilon) = \mathbb{E}_{\mathbb{P}_{\lambda}(\tau)} [\mathcal{L}(\theta; g^{2}, \tau)]$$

• Variational bound at each mini-batch is tight

	Loss	Soft Truncation	NLL	NELBO	FID ODE
	$\mathcal{L}(\boldsymbol{\theta}; g^2, \epsilon)$	X	3.03	3.13	6.70
CIEAD 10	$\mathcal{L}(oldsymbol{ heta};\sigma^2,\epsilon)$	×	3.21	3.34	3.90
CIFAR-10	$\mathcal{L}(oldsymbol{ heta}; g_{\mathbb{P}_1}^2, \epsilon) \ \mathcal{L}_{ST}(oldsymbol{ heta}; g^2, \mathbb{P}_1)$	×	3.06	3.18	6.11
	$\mathcal{L}_{ST}(oldsymbol{ heta};g^2,\mathbb{P}_1)$	✓	3.01	3.08	3.96
	$\mathcal{L}_{ST}(oldsymbol{ heta};g^2,\mathbb{P}_{0.9})$	✓	3.03	3.13	3.45
	$\mathcal{L}(\boldsymbol{\theta}; g^2, \epsilon)$ $\mathcal{L}(\boldsymbol{\theta}; \sigma^2, \epsilon)$	×	3.92	3.94	12.68
I N. 22	$\mathcal{L}(\boldsymbol{\theta}; \sigma^2, \epsilon)$	×	3.95	4.00	9.22
ImageNet32	$\mathcal{L}(oldsymbol{ heta}; g_{\mathbb{P}_1}^2, \epsilon)$	×	3.93	3.97	11.89
	$\mathcal{L}_{ST}(oldsymbol{ heta};g^2,\mathbb{P}_{0.9})$	✓	3.90	3.91	8.42

- Implications
 - Soft Truncation is a better optimization method against the vanilla optimization

	Loss	Soft Truncation	NLL	NELBO	FID ODE
CIFAR-10	$\mathcal{L}(\boldsymbol{\theta}; g^2, \epsilon)$ $\mathcal{L}(\boldsymbol{\theta}; \sigma^2, \epsilon)$ $\mathcal{L}(\boldsymbol{\theta}; g_{\mathbb{P}_1}^2, \epsilon)$ $\mathcal{L}_{ST}(\boldsymbol{\theta}; g^2, \mathbb{P}_1)$	× × ×	3.03 3.21 3.06 3.01	3.13 3.34 3.18 3.08	6.70 3.90 6.11 3.96
	$\mathcal{L}_{ST}(oldsymbol{ heta};g^2,\mathbb{P}_{0.9})$	✓	3.03	3.13	3.45
ImageNet32	$\mathcal{L}(\boldsymbol{\theta}; g^2, \epsilon)$ $\mathcal{L}(\boldsymbol{\theta}; \sigma^2, \epsilon)$ $\mathcal{L}(\boldsymbol{\theta}; g_{\mathbb{P}_1}^2, \epsilon)$ $\mathcal{L}_{ST}(\boldsymbol{\theta}; g^2, \mathbb{P}_{0.9})$	x x √	3.92 3.95 3.93 3.90	3.94 4.00 3.97 3.91	12.68 9.22 11.89 8.42

- Implications
 - Soft Truncation is a better optimization method against the vanilla optimization
 - Soft Truncation significantly solves the NLL-FID trade-off
 - Soft Truncation achieves comparable FID as much as the case of variance weighting

	Loss	Soft Truncation	NLL	NELBO	FID ODE
CIFAR-10	$egin{aligned} \mathcal{L}(oldsymbol{ heta};g^2,\epsilon) \ \mathcal{L}(oldsymbol{ heta};\sigma^2,\epsilon) \ \mathcal{L}(oldsymbol{ heta};g^2_{\mathbb{P}_1},\epsilon) \ \mathcal{L}_{ST}(oldsymbol{ heta};g^2,\mathbb{P}_1) \ \mathcal{L}_{ST}(oldsymbol{ heta};g^2,\mathbb{P}_{0.9}) \end{aligned}$	x x x	3.03 3.21 3.06 3.01 3.03	3.13 3.34 3.18 3.08 3.13	6.70 3.90 6.11 3.96 3.45
ImageNet32	$\mathcal{L}_{ST}(\boldsymbol{\theta}; g^2, \epsilon_{0.9})$ $\mathcal{L}(\boldsymbol{\theta}; g^2, \epsilon)$ $\mathcal{L}(\boldsymbol{\theta}; \sigma^2, \epsilon)$ $\mathcal{L}(\boldsymbol{\theta}; g_{\mathbb{P}_1}^2, \epsilon)$ $\mathcal{L}_{ST}(\boldsymbol{\theta}; g^2, \mathbb{P}_{0.9})$	× × ×	3.92 3.95 3.93 3.90	3.94 4.00 3.97 3.91	12.68 9.22 11.89 8.42

Implications

- Soft Truncation is a better optimization method against the vanilla optimization
- Soft Truncation significantly solves the NLL-FID trade-off
 - Soft Truncation achieves comparable FID as much as the case of variance weighting
 - Soft Truncation keeps NLL at the equivalent level compared to likelihood weighting

Result on CelebA 64×64

SDE	Model	Loss	NLL	NELBO	F. PC	ID ODE
VE	NCSN++	$\mathcal{L}(oldsymbol{ heta}; \sigma^2, \epsilon) \ \mathcal{L}_{ST}(oldsymbol{ heta}; \sigma^2, \mathbb{P}_2)$	3.41 3.44	3.42 3.44	3.95 2.68	-
RVE	UNCSN++	$\mathcal{L}_{ST}(oldsymbol{ heta}; g^2, \epsilon)$ $\mathcal{L}_{ST}(oldsymbol{ heta}; g^2, \mathbb{P}_2)$	2.01 1.97	2.01 2.02	3.36 1.92	-
	DDPM++	$egin{aligned} \mathcal{L}(oldsymbol{ heta};\sigma^2,\epsilon) \ \mathcal{L}_{ST}(oldsymbol{ heta};\sigma^2,\mathbb{P}_1) \end{aligned}$	2.14 2.17	2.21 2.29	3.03 2.88	2.32 1.90
VD	UDDPM++	$\mathcal{L}(oldsymbol{ heta}; \sigma^2, \epsilon) \ \mathcal{L}_{ST}(oldsymbol{ heta}; \sigma^2, \mathbb{P}_1)$	2.11 2.16	2.20 2.28	3.23 2.22	4.72 1.94
VP	DDPM++	$\mathcal{L}(\boldsymbol{\theta}; g^2, \epsilon)$ $\mathcal{L}_{ST}(\boldsymbol{\theta}; g^2, \mathbb{P}_1)$	2.00 2.00	2.09 2.11	5.31 4.50	3.95 2.90
	UDDPM++	$\mathcal{L}(\boldsymbol{\theta}; g^2, \epsilon)$ $\mathcal{L}_{ST}(\boldsymbol{\theta}; g^2, \mathbb{P}_1)$	1.98 2.00	2.12 2.10	4.65 4.45	3.98 2.97

Result on CIFAR-10

Loss	NLL	NELBO	FID (ODE)				
INDM (VP, NLL) INDM (VP, FID) INDM (VP, NLL) + ST	2.98 3.17 3.01	2.98 3.23 3.02	6.01 3.61 3.88				
Nonlinear SDE							

Implications

- Soft Truncation is a better optimization method against the vanilla optimization
- Soft Truncation significantly solves the NLL-FID trade-off
 - Soft Truncation achieves comparable FID as much as the case of variance weighting
 - Soft Truncation keeps NLL at the equivalent level compared to likelihood weighting
- Soft Truncation is universally applicable to any SDEs and network architectures

Model		CIFAR10 32×32		ImageNet32 32×32		CelebA 64×64		CelebA-HQ 256×256		∠-10 < 48	
110001	$NLL\left(\downarrow \right)$	$FID(\downarrow)$	IS (↑)	NLL	FID	IS	NLL	FID	FID	FID	IS
Likelihood-free Models											
StyleGAN2-ADA+Tuning (Karras et al., 2020)	-	2.92	10.02	-	-	-	-	-	-	-	-
Styleformer (Park & Kim, 2022)	-	2.82	9.94	-	-	-	-	3.66	-	15.17	11.01
Likelihood-based Models											
ARDM-Upscale 4 (Hoogeboom et al., 2021)	2.64	-	-	-	-	-	-	-	-	-	-
VDM (Kingma et al., 2021)	2.65	7.41	-	3.72	-	-	-	-	-	-	-
LSGM (FID) (Vahdat et al., 2021)	3.43	2.10	-	-	-	-	-	-	-	-	-
NCSN++ cont. (deep, VE) (Song et al., 2021b)	3.45	2.20	9.89	-	-	-	2.39	3.95	7.23	-	-
DDPM++ cont. (deep, sub-VP) (Song et al., 2021b)	2.99	2.41	9.57	-	-	-	-	-	-	-	-
DenseFlow-74-10 (Grcić et al., 2021)	2.98	34.90	-	3.63	-	-	1.99	-	-	-	-
ScoreFlow (VP, FID) (Song et al., 2021a)	3.04	3.98	-	3.84	8.34	-	-	-	-	-	-
Efficient-VDVAE (Hazami et al., 2022)	2.87	-	-	-	-	-	1.83	-	-	-	-
PNDM (Liu et al., 2022)	-	3.26	-	-	-	-	-	2.71	-	-	-
ScoreFlow (deep, sub-VP, NLL) (Song et al., 2021a)	2.81	5.40	-	3.76	10.18	-	-	-	-	-	-
Improved DDPM (L_{simple}) (Nichol & Dhariwal, 2021)	3.37	2.90	-	-	-	-	-	-	-	-	-
UNCSN++ (RVE) + ST	3.04	2.33	10.11	-	-	-	1.97	1.92	7.16	7.71	13.43
DDPM++(VP, FID) + ST	2.91	2.47	9.78	-	-	-	2.10	1.90	-	-	-
DDPM++ (VP, NLL) + ST	2.88	3.45	9.19	3.85	<u>8.42</u>	11.82	<u>1.96</u>	2.90	-	-	-

Thank you!