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* @Generative Diffusion
- dxy = [f(x,t) — g% (t)se(x,t)] AT + g(t) AW,
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Contribution of This Paper

\
Central Questions
[Q1] How is L(0; A, €) connected to log-likelihood?
[Q2] How to optimize L(60; A, €) well? )
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Variational Bound of General-Weighted Diffusion Loss"l

\
Central Questions

[Q1] How is L(0; A, €) connected to log-likelihood?

* Question 1
* Partial answer to Q1
* [Corollary 1 (Song21Maximum)] E, | — logpg(xo)] < L(O;)\ = g7, ¢€)

o p? is the marginal distribution of the generative process at time t

* This corollary holds only when A = g*
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\
Central Questions

[Q1] How is L(0; A, €) connected to log-likelihood?

* Question 1
* Partial answer to Q1
» [Corollary 1 (Song21Maximum)] Ey, [ —logp§(x0)] < L(6;\ = ¢°,€) <= Dxr(p.|Ip§) < L(6; X = g%, €)
o p? is the marginal distribution of the generative process at time t

* This corollary holds only when A = g*

e Complete answer to Q1
* [Theorem 1] Ep, (; [EXT [ - logpf(xT)H < L(O; N\ e) <= Ep, (1) [DKL(pTprﬂ < L(O; )\ ¢€)
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Soft Truncation: Alternative Optimization Method of £(0; 4, €) ' ‘

\
Central Questions

[Q2] How to optimize L(60; A, €) well?

Dataset Model NLL FID

DDPM++ (VP, NLL) 3.03 6.70
CIFAR-10 + Soft Truncation 3.03 3.45
DDPM++ (VP, FID) 3.21 3.90

DDPM++ (VP, NLL) 3.92 12.68
ImageNet32 + Soft Truncation 3.90 8.42
DDPM++ (VP, FID) 3.95 9.22
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Soft Truncation: Alternative Optimization Method of £(0; 4, €) ' ‘

\
Central Questions

[Q2] How to optimize L(60; A, €) well?

* Question 2

 [Observation 1] Small diffusion time contributes the most of the integration in £(8; g2, €)

16
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\
Central Questions

[Q2] How to optimize L(60; A, €) well?

* Question 2
* [Observation 1] Small diffusion time contributes the most of the integration in L(6; A, €)

* [Observation 2] Large diffusion time contributes to the global sample fidelity

t=T Diffusion Time Horizon t=20

Good

Not
Good

Generative Process
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Central Questions

[Q2] How to optimize L(60; A, €) well?

* Question 2
* [Observation 1] Small diffusion time contributes the most of the integration in L(6; A, €)

* [Observation 2] Large diffusion time contributes to the global sample fidelity

* = A better optimization method will bring an enhanced score accuracy on large diffusion time
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Central Questions

[Q2] How to optimize L(60; A, €) well?

* Question 2
* [Observation 1] Small diffusion time contributes the most of the integration in L(6; A, €)

* [Observation 2] Large diffusion time contributes to the global sample fidelity

* = A better optimization method will bring an enhanced score accuracy on large diffusion time

* (Soft Truncation) Optimize L(8; g°,7) = fTT dt for T ~ P(7) in every mini-batch update

» Softens the static hyper-parameter € with a random variable T ~ P(7)
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\
Central Questions

[Q2] How to optimize L(60; A, €) well?

* Question 2
* [Observation 1] Small diffusion time contributes the most of the integration in L(6; A, €)

* [Observation 2] Large diffusion time contributes to the global sample fidelity

* = A better optimization method will bring an enhanced score accuracy on large diffusion time

* (Soft Truncation) Optimize L(8; g°,7) = fTT dt for T ~ P(7) in every mini-batch update

» Softens the static hyper-parameter € with a random variable T ~ P(7)

* From L(6;1,€) = Ep, ) [L(0; g2, )], Soft Truncation is an optimization method of general-weighted loss
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Soft Truncation: Maximum Perturbed Likelihood Estimation

~N
Central Questions

[Q2] How to optimize L(60; A, €) well?

* Question 2

* Vanilla training can be framed by Maximum Likelihood Estimation by Song21Maximum only when A = g*
¢ By, [—logpf(x0)] < L(6; ) =g, ¢)
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Central Questions
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* Vanilla training can be framed by Maximum Likelihood Estimation by Song21Maximum only when A = g*
* By, [—logpg(xo)] < L(B; A =g ¢)

* Soft Truncation can be framed by Maximum Perturbed Likelihood Estimation

* Actual optimization loss at each mini-batch update
- Dir(p-|p?) < L(6;9%7)
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~
Central Questions

[Q2] How to optimize L(60; A, €) well?

* Question 2
* Vanilla training can be framed by Maximum Likelihood Estimation by Song21Maximum only when A = g*
* By, [—logpg(xo)] < L(B; A =g ¢)

* Soft Truncation can be framed by Maximum Perturbed Likelihood Estimation

* Actual optimization loss at each mini-batch update
 Dir(p-llp?) < £(8;9%,7)

* Loss averaged by mini-batches — Theorem I
o Ep, () [Drr(p-|p2)] < L(6; ), €) = Ep, () [L£(0; 6°, 7)]
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Soft Truncation: Maximum Perturbed Likelihood Estimation

~
Central Questions

[Q2] How to optimize L(60; A, €) well?

* Question 2

* Vanilla training can be framed by Maximum Likelihood Estimation by Song21Maximum only when A = g*
* By, [—logpg(xo)] < L(B; A =g ¢)
* Soft Truncation can be framed by Maximum Perturbed Likelihood Estimation
* Actual optimization loss at each mini-batch update
 Drr(p-llp?) < L£(6;¢% 7)
* Loss averaged by mini-batches
o Ep, () [Drr(p-|p2)] < L(6; ), €) = Ep, () [L£(0; 6°, 7)]
* Variational bound at each mini-batch is tight

—— NELBO, £(0;¢% 7) + R.(6)
w —— NLL, E[—log p?(x,)] + R.(0)

Test Performances

10" 101 10-* 102 107! 10"
Diffusion Time 7 (log)
KAIST Copyright © 2022 by Dongjun Kim, Dept. of Industrial and Systems Engineering, KAIST




Experimental Result

KAIST

Loss Truiittiun NLL NELBO DF;_)[];',
£(6; g2, €) X 3.03 3.13 6.70
£(0;02,€) X 3.21 3.34 3.90
CIFAR-10 /(. g2 . €) X 3.06 318 611
Lor(0;9%,P1) v 3.01 3.08 3.96
Lo1(0:9%,P49) v 3.03 3.13 3.45
£(0; g2, €) X 3.92 3.94 12.68
ImageNet32 £(6; D‘j €) X 3.95 4.00 9.22
£(6; 97, ,€) X 3.93 3.97 11.89
Ls1(0:9%,Po.g) v 3.90 3.91 8.42

Implications

* Soft Truncation is a better optimization method against the vanilla optimization
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£(6; 97, ,€) X 3.93 3.97 11.89
Ls1(0:9%,Po.g) v 3.90 3.91 8.42

* Implications
* Soft Truncation is a better optimization method against the vanilla optimization
* Soft Truncation significantly solves the NLL-FID trade-off

* Soft Truncation achieves comparable FID as much as the case of variance weighting
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Experimental Result

Loss Truiittinn NLL NELBO g;_)%

£(6; g2, €) X 3.03 3.13 6.70

£(0;02,€) X 3.21 3.34 3.90

CIFAR-10 /(. g2 . €) X 3.06 3.18 6.11
Lor(0;9%,P1) v 3.01 3.08 3.96
Lo1(0:9%,P49) v 3.03 3.13 3.45

£(0; g2, €) X 3.92 3.94 12.68

ImageNet32 £(6; cf €) X 3.95 4.00 9.22
- £(6; 97, ,€) X 3.93 3.97 11.89
Ls1(0:9%,Po.g) v 3.90 3.1 8.42

* Implications
* Soft Truncation is a better optimization method against the vanilla optimization
* Soft Truncation significantly solves the NLL-FID trade-off
* Soft Truncation achieves comparable FID as much as the case of variance weighting

* Soft Truncation keeps NLL at the equivalent level compared to likelihood weighting
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Experimental Result

Result on CelebA 64x64
SDE  Model Loss NLL  NELBO . FIDODE
VE NCSNas £(0; 02, e% 341 3.42 3.95
Lop(0;02,Pa) 344 3.44 2.68
£(0; g%, €) 2.01 2.01 3.36 - _
RVE  UNCSNa+ |00 L 1er aer 1e Result on CIFAR-10
DDPMas E(B;?S“‘,e% - i:j 3;; ;g; i;ﬁ Loss NLL NELBO FID (ODE)
sTI%ig 71 ' - ‘ ' INDM (VP, NLL) 2.98 2.98 6.01
UDDPMas £(0;5%, €) 2.11 2.20 323 472 INDM (VP, FID) 3.17 3.23 3.61
VP Lsr(0:0%,P1) 2.16 2.28 2.22 1.94 INDM (VP, NLL) + ST 3.01 3.02 3.88
£(8; g%, €) 2.00 2.09 531 3.95
DDPM-++ ; .
LsT(8;9%,P1) 2,00 2.11 450 290 — Nonlinear SDE
L2
UDDPMas | £(03 9 ,e% 1.98 2.12 465  3.98
Lor(0:9%,P1) 200 2.10 145 297

* Implications
* Soft Truncation is a better optimization method against the vanilla optimization
* Soft Truncation significantly solves the NLL-FID trade-off
* Soft Truncation achieves comparable FID as much as the case of variance weighting
* Soft Truncation keeps NLL at the equivalent level compared to likelihood weighting

* Soft Truncation is universally applicable to any SDEs and network architectures
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CIFAR10 ImageNet32 CelebA CelebA-HQ STL-10

Model 32 x 32 32 x 32 64 x 64 256 x 256 48 x 48

NLL (/) FID() IS(t) NLL FID IS NLL FID FID FID IS
Likelihood-free Models
StyleGAN2-ADA+Tuning (Karras et al., 2020) - 2.92 10.02 - - - - - - - -
Styleformer (Park & Kim, 2022) - 2.82 9.94 - - - - 3.66 - 15.17 11.01
Likelihood-based Models
ARDM-Upscale 4 (Hoogeboom et al., 2021) 2.64 - - - - - - - - - -
VDM (Kingma et al., 2021) 2.65 7.41 - 3.72 - - - - - - -
LSGM (FID) (Vahdat et al., 2021) 343 2.10 - - - - - - - -
NCSN++ cont. (deep, VE) (Song et al., 2021b) 3.45 2.20 9.89 - - - 239 395 7.23 - -
DDPM-++ cont. (deep, sub-VP) (Song et al., 2021b) 2.99 2.41 9.57 - - - - - - - -
DenseFlow-74-10 (Grcié et al., 2021) 2.98 34.90 - 3.63 - - 1.99 - - - -
ScoreFlow (VP, FID) (Song et al., 2021a) 3.04 3.98 - 384 834 - - - - - -
Efficient-VDVAE (Hazami et al., 2022) 2.87 - - - - - 1.83 - - - -
PNDM (Liu et al., 2022) - 3.26 - - - - - 2.71 - - -
ScoreFlow (deep, sub-VP, NLL) (Song et al., 2021a) 2.81 5.40 - 376 10.18 - - - - - -
Improved DDPM (L ;1) (Nichol & Dhariwal, 2021) 3.37 2.90 - - - - - - - - -
UNCSN++ (RVE) + ST 3.04 2.33 10.11 - - - 1.97 192 7.16 7.71 1343
DDPM++ (VP, FID) + ST 2.91 2.47 9.78 - - - 2.10 190 - - -
DDPM++ (VP, NLL) + ST 2.88 3.45 9.19 385 842 1182 196 290 - - -
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Thank you!
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