Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

Yunfei Li^{1*}, Tian Gao^{1*}, Jiaqi Yang², Huazhe Xu³, Yi Wu^{1,4}

¹IIIS Tsinghua University ²UC Berkeley ³Stanford

⁴Shanghai Qi Zhi Institute

Reinforcement learning

Reinforcement learning

MuZero Schrittwieser, J. et al. Nature

OpenAl's robot hand OpenAl

Magnetic control of tokamak plasmas Degrave, J. et al. Nature

Reinforcement learning

MuZero Schrittwieser, J. et al. Nature OpenAl's robot hand OpenAl Magnetic control of tokamak plasmas Degrave, J. et al. Nature

Deep reinforcement learning (RL)

- Great performance in many domains
- Brittle to tune

Combining with Supervised learning

Deep reinforcement learning (RL)

- Great performance in many domains
- Brittle to tune

Combining with Supervised learning

Deep reinforcement learning (RL)

- Great performance in many domains
- Brittle to tune

Supervised learning (SL)

- Steady optimization
- Require dataset and rely on its quality

Combining with Supervised learning

Deep reinforcement learning (RL)

- Great performance in many domains
- Brittle to tune

Supervised learning (SL)

- Steady optimization
- Require dataset and rely on its quality

Combine SL and RL

- Great performance
- Steady optimization
- Not require dataset

Self-imitation learning (SIL)

- Self-imitation learning (SIL)
 - Optimize RL and SL objectives jointly (non-phasic)

- Self-imitation learning (SIL)
 - Optimize RL and SL objectives jointly (non-phasic)
 - Even more brittle to optimize the mixed objective

- Self-imitation learning (SIL)
 - Optimize RL and SL objectives jointly (non-phasic)
 - Even more brittle to optimize the mixed objective
- Our method

- Self-imitation learning (SIL)
 - Optimize RL and SL objectives jointly (non-phasic)
 - Even more brittle to optimize the mixed objective
- Our method
 - Phasic optimization process
 - Alternate between RL phase and SL phase
 - Optimize RL and SL objectives in two separate phases

- Self-imitation learning (SIL)
 - Optimize RL and SL objectives jointly (non-phasic)
 - Even more brittle to optimize the mixed objective
- Our method
 - Phasic optimization process
 - Alternate between RL phase and SL phase
 - Optimize RL and SL objectives in two separate phases
 - Tackle sparse-reward problems effectively

- Self-imitation learning (SIL)
 - Optimize RL and SL objectives jointly (non-phasic)
 - Even more brittle to optimize the mixed objective
- Our method
 - Phasic optimization process
 - Alternate between RL phase and SL phase
 - Optimize RL and SL objectives in two separate phases
 - Tackle sparse-reward problems effectively
 - No need for datasets

Sparse reward issue for online RL

Sparse reward issue for online RL

• Successful au_1 and failed au_2 only differ in the last step

Sparse reward issue for online RL

- Successful au_1 and failed au_2 only differ in the last step
- All actions in τ_2 are considered bad based on the final reward 0

Sparse reward issue for online RL

Failure

Add a **value-difference** intrinsic reward:

$$r^{\rm int}(s_t,a_t,g)\coloneqq V_{\psi}(s_{t+1},g)-V_{\psi}(s_t,g)$$

Difference of V can capture whether a transition is approaching the goal

Successful rollouts + augmented data

Successful rollouts + augmented data

Augmentation

- Goal relabeling
- Task reduction

Successful rollouts + augmented data

Augmentation

- Goal relabeling
- Task reduction

Successful rollouts + augmented data

Augmentation

- Goal relabeling
- Task reduction

$$(s_0, g) \to (s_0, s_B) + (s_B, g)$$

Successful rollouts + augmented data

Augmentation

- Goal relabeling
- Task reduction

$$(s_0, g) \to (s_0, s_B) + (s_B, g)$$

Successful rollouts + augmented data

Augmentation

- Goal relabeling
- Task reduction

$$(s_0, g) \to (s_0, s_B) + (s_B, g)$$

Successful rollouts + augmented data

Augmentation

- Goal relabeling
- Task reduction

$$(s_0, g) \to (s_0, s_B) + (s_B, g)$$

Successful rollouts + augmented data

Augmentation

- Goal relabeling
- Task reduction

Decompose a challenging task into two simpler subtasks

$$(s_0, g) \to (s_0, s_B) + (s_B, g)$$

• $s_B^* = \arg\max_{s_B} V_{\psi}(s_0, s_B) \oplus V_{\psi}(s_B, g)$

Offline phase

Offline phase

- Advantage weighted behavior cloning
 - $L(\theta) = -\mathbb{E}_{(g;s,a)\in\mathcal{D}}[w(s,a,g)\log\pi(a|s,g)],$
 - $w(s, a, g) = \exp\left(\frac{1}{\beta}(R V_{\phi}(s, g))\right)$

Offline phase

- Advantage weighted behavior cloning
 - $L(\theta) = -\mathbb{E}_{(g;s,a)\in\mathcal{D}}[w(s,a,g)\log\pi(a|s,g)],$
 - $w(s, a, g) = \exp\left(\frac{1}{\beta}(R V_{\phi}(s, g))\right)$
- It is feasible to adopt advanced offline RL methods

PhAsic self-Imitative Reduction (PAIR)

https://sites.google.com/view/pair-gcrl