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Supervised learning (SL)
* Steady optimization
* Require dataset and rely on its quality
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* Great performance
* Steady optimization
* Not require dataset
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e Self-imitation learning (SIL)

* Optimize RL and SL objectives jointly (non-phasic)
* Even more brittle to optimize the mixed objective

e Our method

* Phasic optimization process
* Alternate between RL phase and SL phase
* Optimize RL and SL objectives in two separate phases

* Tackle sparse-reward problems effectively
* No need for datasets



Our framework

PhAsic self-Imitative Reduction (PAIR)

Online Phase Offline Phase



Our framework

PhAsic self-Imitative Reduction (PAIR)

Online Phase Offline Phase

5N o
AN
®\_/ o

agent

Reinforcement
learning




Our framework

PhAsic self-Imitative Reduction (PAIR)

Online Phase Offline Phase

SUCCESS

failure
env w agent —»[ augment J—»

Reinforcement Data
learning collection




Our framework

PhAsic self-Imitative Reduction (PAIR)

Online Phase Offline Phase

SUCCESS

failure
env w agent —»[ augment j—»

Reinforcement Data Supervised
learning collection learning




Our framework

PhAsic self-Imitative Reduction (PAIR)

Online Phase Offline Phase

SUCCESS

S, T
qgs <
@ S failure
env w agent —»[ augment j—»

Reinforcement Data Supervised
learning collection learning




Online phase: RL with intrinsic reward

A h

Reinforcement
learning




m

Online phase: RL with intrinsic reward
Sparse reward issue for online RL
®, "u

o A2 agen

Reinforcement
learning




Success

Online phase: RL with intrinsic reward

Sparse reward issue for online RL
h N
P 5\"_0 B St 0 o
env \y agent 0_:__ l v @

L]
Agy -+, Ap—1 -

Reinforcement - " ° St

learning a‘ ) !

V, = 0.01 V, =086 ¢ —
®

T2

Failure

* Successful 7; and failed 7, only differ in the last step



Online phase: RL with intrinsic reward
Sparse reward issue for online RL
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Sparse reward issue for online RL
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Online phase: data collection
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