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Background and motivation gmurm

learning research

e Continual learning - learning from a stream of data while:

o reducing forgetting,

o maximizing knowledge transfer,

o and satisfying other desiderata on computation and memory.
e The no-forgetting is usually a soft constraint, but sometimes remembering might be critical!
e Inthis work, we devise a method which can put guarantees on forgetting.

e Main idea: define a region of viable parameters for the current task, and stay within it
for the rest of the training.
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Definition gInum

e Inthis more restrictive setting, the learning objective for task T} can be written as [1]:
arg min £(T}, 6) satisfying £(T},,0) < £(T),, 65,)
G

forall m=1,...,5—1
where 6, are the parameters obtained directly after learning task m
and / is the cross-entropy loss over the whole task dataset.
e Alternatively, we look for parameter of the new task 6 within the set of parameters ©,,

that satisfies the inequality condition.

[1] Chaudhry, et al. Efficient lifelong learning with a-gem, ICLR 2019.
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Perfect CL is NP-hard gmum
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TASK 1 TASK 9 TASK 3 e Problem: the viable parameter
region ©,,, is highly irregular

e Previous work [2] showed that
even if we assume that the
regions are polytopes, it's still
NP-hard.

e |n our work, we try to solve this
by considering a simpler setting
with additional assumptions.

[2] Knoblauch et al, Optimal Continual Learning has Perfect Memory and is NP-hard, ICML 2020.
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Intersection of parameter regions gmum
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TASK 1 : TASK 2 | TASK 3

e At each point, we try to find the largest hyperrectangle that fits in the viable region ©,.
e Finding intersections between hyperrectangles can be done in polynomial time.

e In our work, we show how to implement this idea efficiently through interval arithmetic.
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Practical implementation - intervals gmum

e In practice, we implement the hyperrectangle region by representing each weight as an interval
rather than a point in space:

(W, W] = Wi — ek, Wi + €k

e We use the tools from interval arithmetic to implement interval neural networks:
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learning research

e We can find an upper bound E(Tj, @) on the worst-case loss for task 1’ on the parameter

region @ represented by the hyperrectangle:

Z(Tja@) >= grggx K(Tjﬂg)

e Aslong as we stay within © during the training, the loss won't be higher than é(Tj, O).

e Thisis easy to compute and differentiable wrt. parameters.

e We can minimize it to find a region of parameters with low loss everywhere
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Algorithm 1 InterContiNet training procedure for a given

task
Input: model trained on the previous task (weights W*, Our method works in two stages:
radii £*), current task 7. '
Reparameterize W, ¢ using Eq. (5).

for epochin 1...center_epochs do 1.  Find the centers W that minimize
Update ;2 by minimizing /(7;,©)  {Train centers}
end for cross-entropy loss while staying within the

Initialize £ as largest possible within the previous interval.

for epochin 1...radii_epochs do parameter region.

Update v by minimizing ((7},©)  {Train radii} 2. Shrink the radii & to minimize the
if acc > acc - acc_thresh then ’
break worst-case loss.
end if
end for

return W, =
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Table 2. The average accuracy across all five tasks of the split Fash-
1onMNIST protocol, evaluated after learning the whole sequence.
Each value is the average of five runs (with standard deviations).

Experiments

Table 1. The average accuracy across all five tasks of the split
MNIST protocol, evaluated after learning the whole sequence.
Each value is the average of five runs (with standard deviations).

Method Incremental Incremental Incremental Method Incremental Incremental Incremental
task domain class task domain class
SGD 96.27 = 0.38 64.58 +=0.26 19.01 + 0.04 SGD 9222 +3.06 82.77+0.44 19.91 4+ 0.01
Adam 9553 4+3.16 5932 +4+1.08 19.74 +0.01 Adam 88.13 +5.64 7848 4+047 19.96 + 0.01
L2 96.31 =041 72.21+0.17 18.88+0.18 152 97.36 +0.17 92.65+0.09 2691 +1.23
EWC 97.01 +0.13 76.90 4+ 0.41 18.90 + 0.06 EWC 97.53 4+ 0.15 92.12+0.18 19.90 + 0.01
oEWC 97.01 £0.13 77.024+0.51 18.89 +0.07 oEWC 96.70 + 0.57 88.83 +0.30 19.87 £ 0.02
SI 96.19 + 0.63 80.62 +0.17 17.94 + 0.57 SI 97.00+0.25 91454+0.07 1997 +0.34
MAS 96.52 +0.14 84.41+0.42 17.38+4.19 MAS 9743 +0.14 91.74 +£0.19 10.00 & 0.00
LwF 97.03 +0.05 82.76 +0.17 49.37 + 0.68 LwF 98.10 £ 0.07 88.63 +0.12 39.51 + 145
InterContiNet 98.93 +0.05 77.77 +1.24 40.73 4+ 3.26 InterContiNet 98.37 4+ 0.06 92.65 + 0.40 35.11 4+ 0.02
Offline 99.74 4 0.03 99.03 +0.04 98.49 + 0.02 Offline 97.98 +0.05 96.39 +0.06 82.544+0.13




Ablation studies

By tuning the hyperparameters we can
balance plasticity (accuracy on the
current task, top row) and stability
(accuracy on the first task, bottom row).

Check out our paper for more
details!
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