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Background and motivation
● Continual learning – learning from a stream of data while:

○ reducing forgetting,

○ maximizing knowledge transfer,

○ and satisfying other desiderata on computation and memory.

● The no-forgetting is usually a soft constraint, but sometimes remembering might be critical!

● In this work, we devise a method which can put guarantees on forgetting.

● Main idea: define a region of viable parameters for the current task, and stay within it 
for the rest of the training.
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Definition
● In this more restrictive setting, the learning objective for task       can be written as [1]:

for all 

where         are the parameters obtained directly after learning task 

and    is the cross-entropy loss over the whole task dataset.

3[1] Chaudhry, et al. Efficient lifelong learning with a-gem, ICLR 2019.

● Alternatively, we look for parameter of the new task 𝜭 within the set of parameters          

that satisfies the inequality condition.



Perfect CL is NP-hard

● Problem: the viable parameter 
region         is highly irregular

4[2] Knoblauch et al, Optimal Continual Learning has Perfect Memory and is NP-hard, ICML 2020.

● Previous work [2]  showed that 
even if we assume that the 
regions are polytopes, it’s still 
NP-hard.

● In our work, we try to solve this 
by considering a simpler setting 
with additional assumptions.



Intersection of parameter regions

● At each point, we try to find the largest hyperrectangle that fits in the viable region         .  
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● Finding intersections between hyperrectangles can be done in polynomial time.

● In our work, we show how to implement this idea efficiently through interval arithmetic.



Practical implementation - intervals
● In practice, we implement the hyperrectangle region by representing each weight as an interval 

rather than a point in space:

6

● We use the tools from interval arithmetic to implement interval neural networks:



● As long as we stay within      during the training, the loss won’t be higher than                 .

Interval upper bound
● We can find an upper bound                    on the worst-case loss for task       on the parameter 

region      represented by the hyperrectangle:
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● This is easy to compute and differentiable wrt. parameters.

● We can minimize it to find a region of parameters with low loss everywhere



InterContiNet

Our method works in two stages:

1. Find the centers W that minimize 

cross-entropy loss while staying within the 

parameter region.

2. Shrink the radii 𝜺 to minimize the 

worst-case loss.
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Experiments
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Ablation studies
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● By tuning the hyperparameters we can 
balance plasticity (accuracy on the 
current task, top row) and stability 
(accuracy on the first task, bottom row).

● Check out our paper for more 
details!


