

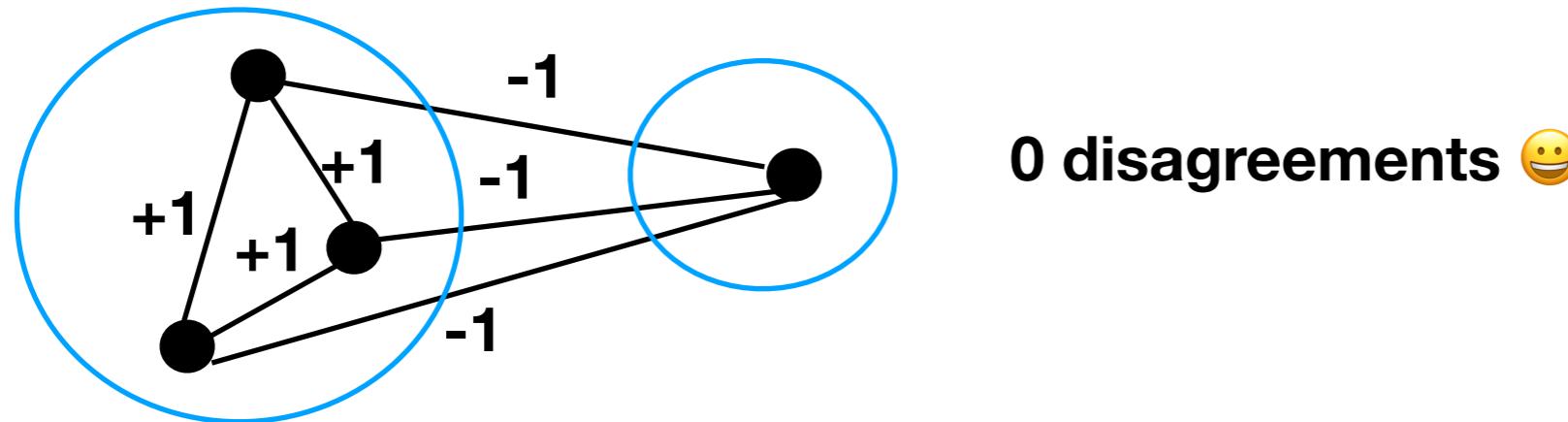
Online and Consistent Correlation Clustering

Andreas Maggiori

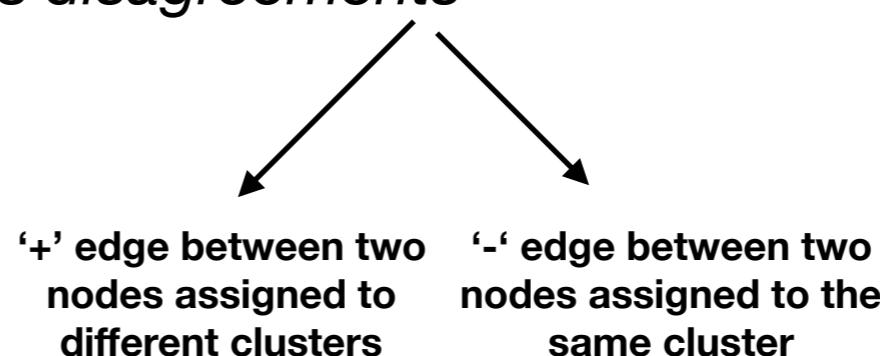
Vincent Cohen-Addad, Silvio Lattanzi, Nikos Parotsidis

Correlation Clustering - Problem Statement

Input: a complete signed graph $G = (V, E, s)$ where $s(e) = '+'$ or $'-'$ for every edge e

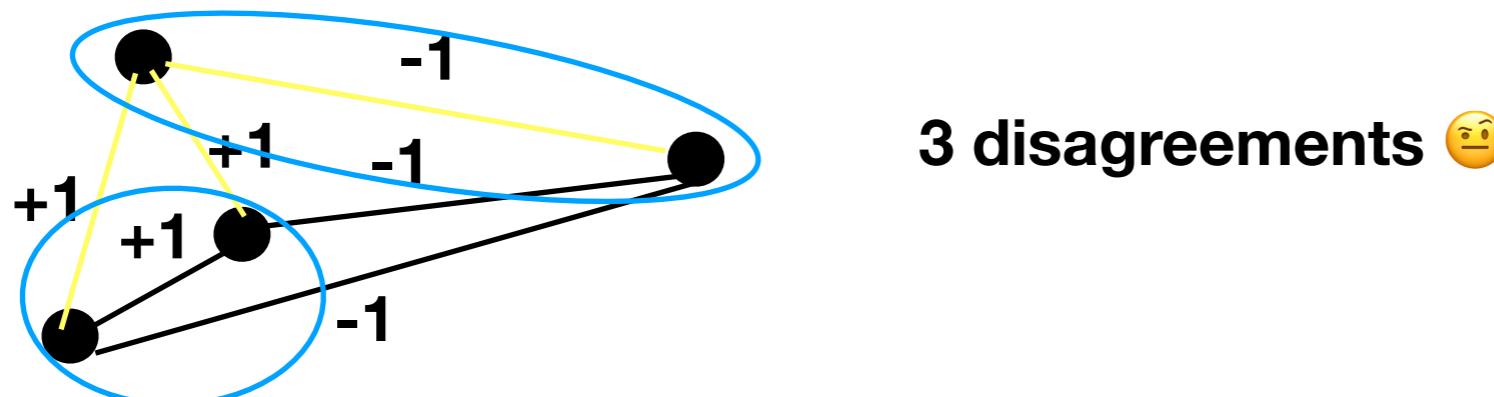


Goal: output a clustering which minimises *disagreements*

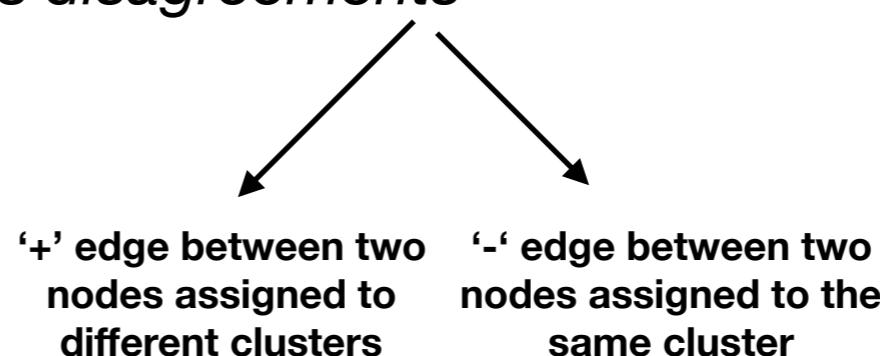


Correlation Clustering - Problem Statement

Input: a complete signed graph $G = (V, E, s)$ where $s(e) = '+'$ or $'-'$ for every edge e



Goal: output a clustering which minimises *disagreements*



Correlation clustering is well studied.

Offline setting

- Introduced by Bansal et al. 2004. The problem is NP-HARD.
- Pivot algorithm is a 3-approximation on expectation. (Ailon et al. 2008)
- LP based 2.06-approximation algorithm (Chawla et al 2015)

Correlation clustering is well studied.

Offline setting

- Introduced by Bansal et al. 2004. The problem is NP-HARD.
- Pivot algorithm is a 3-approximation on expectation. (Ailon et al. 2008)
- LP based 2.06-approximation algorithm (Chawla et al 2015)

Other settings

- Distributed: Chierichetti et al 2014, Ahi et al. 2015, Pan et al. 2015, Cohen-Addad et al. 2021
- Online: Mathieu et al. 2010

Online setting

- At each time t : a node arrives, revealing all its incident edges to previously arrived nodes.
- Clustering decisions are irrevocable:
 - create a new singleton cluster with the newly arrived node; or
 - Add that node to a preexisting cluster.
- Mathieu et al. proved that any online algorithm is $\Omega(n)$ - competitive.
Why: difficult to distinguish if an edge is a bridge between two cliques or it is part of a clique.

Online setting

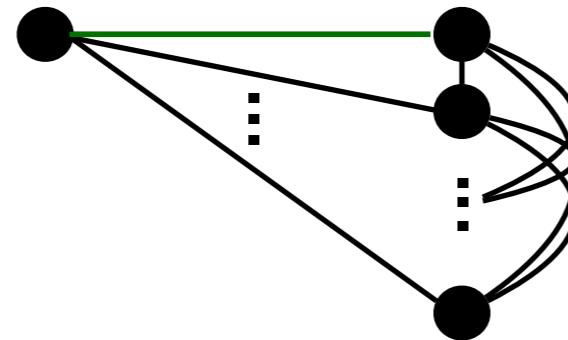
- At each time t : a node arrives, revealing all its incident edges to previously arrived nodes.
- Clustering decisions are irrevocable:
 - create a new singleton cluster with the newly arrived node; or
 - Add that node to a preexisting cluster.
- Mathieu et al. proved that any online algorithm is $\Omega(n)$ - competitive.
Why: difficult to distinguish if an edge is a bridge between two cliques or it is part of a clique.

Online setting

- At each time t : a node arrives, revealing all its incident edges to previously arrived nodes.
- Clustering decisions are irrevocable:
 - create a new singleton cluster with the newly arrived node; or
 - Add that node to a preexisting cluster.
- Mathieu et al. proved that any online algorithm is $\Omega(n)$ - competitive.
Why: difficult to distinguish if an edge is a bridge between two cliques or it is part of a clique.

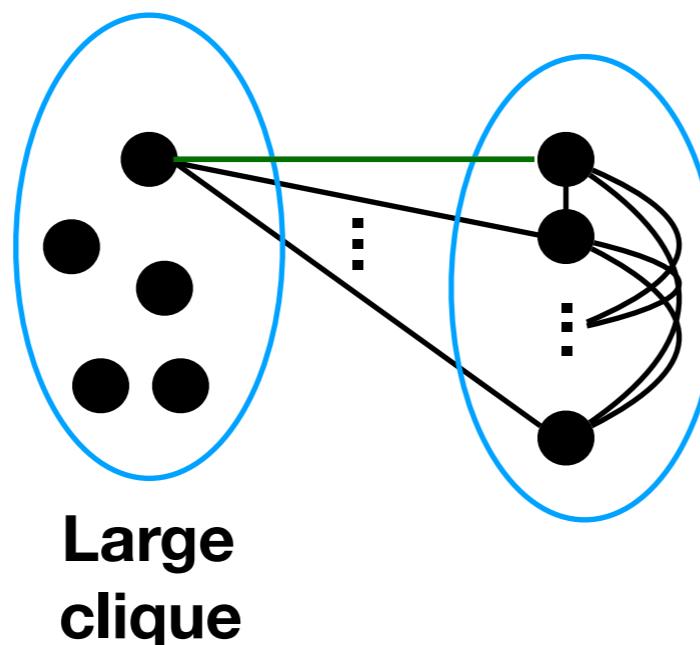
Online setting

- At each time t : a node arrives, revealing all its incident edges to previously arrived nodes.
- Clustering decisions are irrevocable:
 - create a new singleton cluster with the newly arrived node; or
 - Add that node to a preexisting cluster.
- Mathieu et al. proved that any online algorithm is $\Omega(n)$ - competitive.
Why: difficult to distinguish if an edge is a bridge between two cliques or it is part of a clique.



Online setting

- At each time t : a node arrives, revealing all its incident edges to previously arrived nodes.
- Clustering decisions are irrevocable:
 - create a new singleton cluster with the newly arrived node; or
 - Add that node to a preexisting cluster.
- Mathieu et al. proved that any online algorithm is $\Omega(n)$ - competitive.
Why: difficult to distinguish if an edge is a bridge between two cliques or it is part of a clique.



Online setting with **recourse**

times a node changes cluster

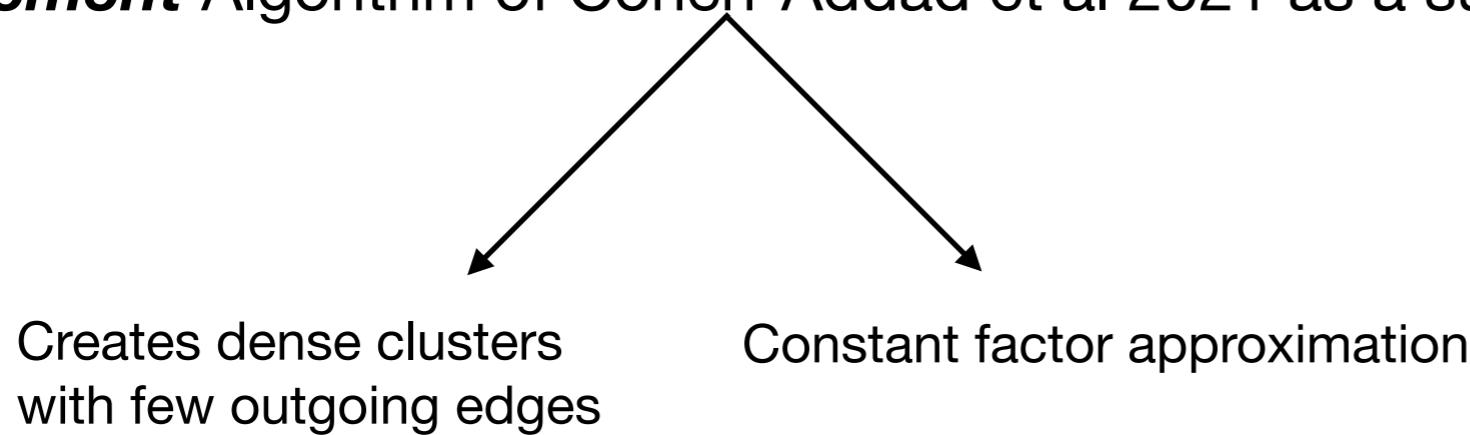
- At each time t : a node arrives, revealing all its incident edges to previously arrived nodes.
- Clustering decisions are **NOT** irrevocable.
- Goal: having at all times a constant factor approximation while minimising the worst case recourse of a node.

Contributions:

- A constant factor approximation algorithm which achieves worst case $\log(n)$ recourse per node.
- A matching lower bound.

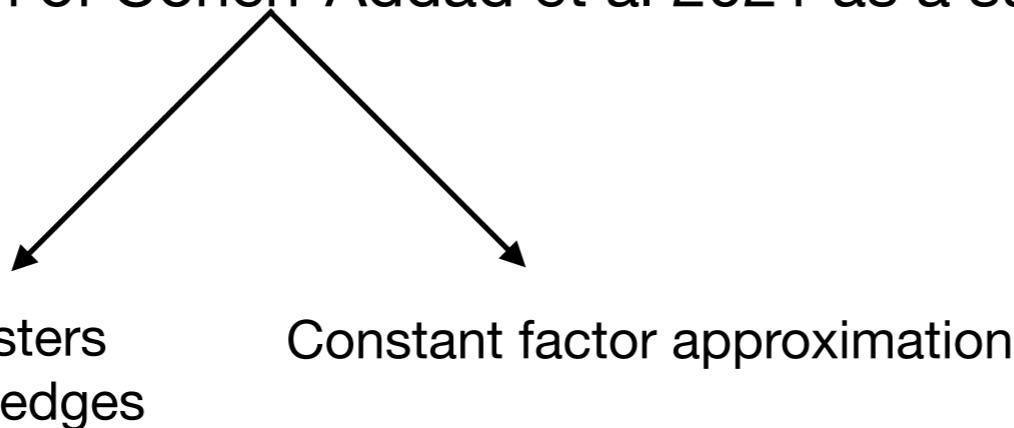
Online setting with recourse

Agreement Algorithm of Cohen-Addad et al 2021 as a subroutine



Online setting with recourse

Agreement Algorithm of Cohen-Addad et al 2021 as a subroutine

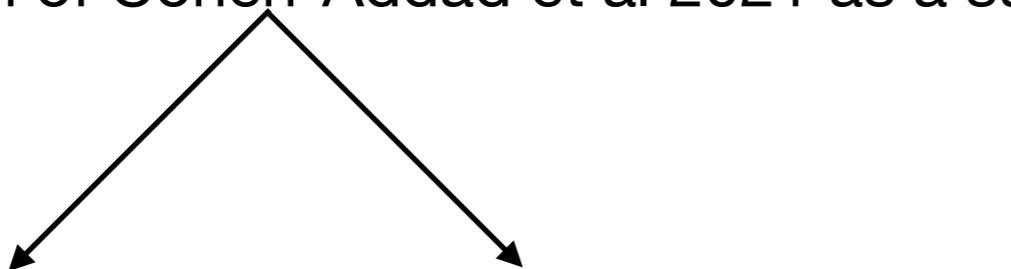


Online Agreement Algorithm

1. Rerun the Agreement Algorithm

Online setting with recourse

Agreement Algorithm of Cohen-Addad et al 2021 as a subroutine



Creates dense clusters
with few outgoing edges

Constant factor approximation

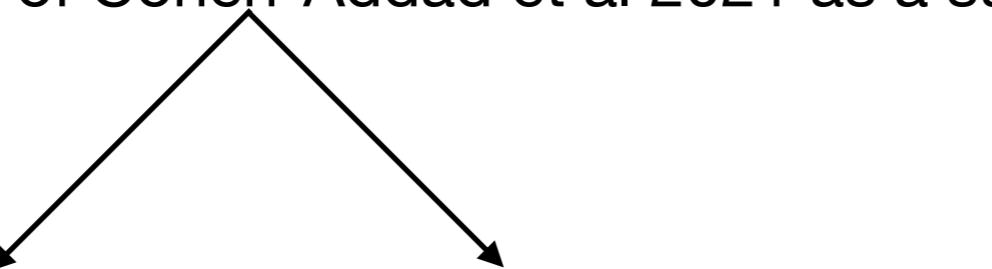
Online Agreement Algorithm

1. Rerun the Agreement Algorithm

Worst case linear recourse

Online setting with recourse

Agreement Algorithm of Cohen-Addad et al 2021 as a subroutine

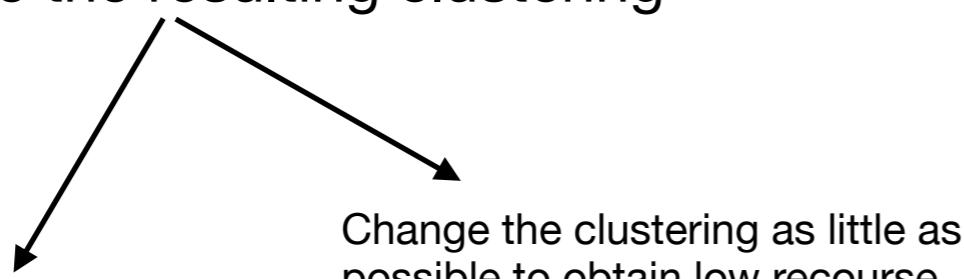


Creates dense clusters
with few outgoing edges

Constant factor approximation

Online Agreement Algorithm

1. Rerun the Agreement Algorithm
2. Stabilize the resulting clustering

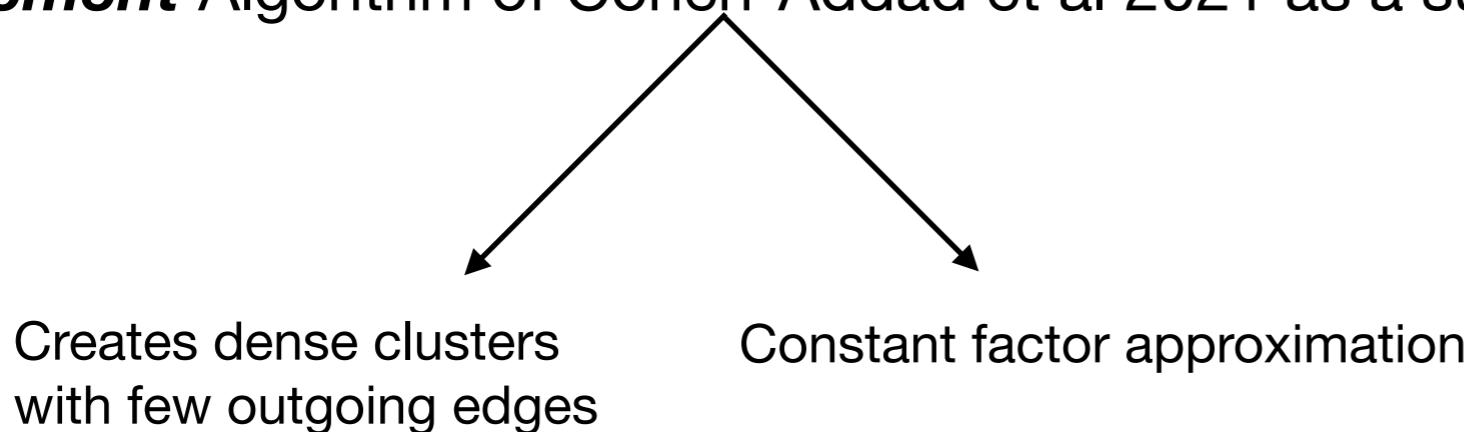


Follow (blindly) the advice of the
Agreement Algorithm to get
constant competitive ratio for free

Change the clustering as little as
possible to obtain low recourse

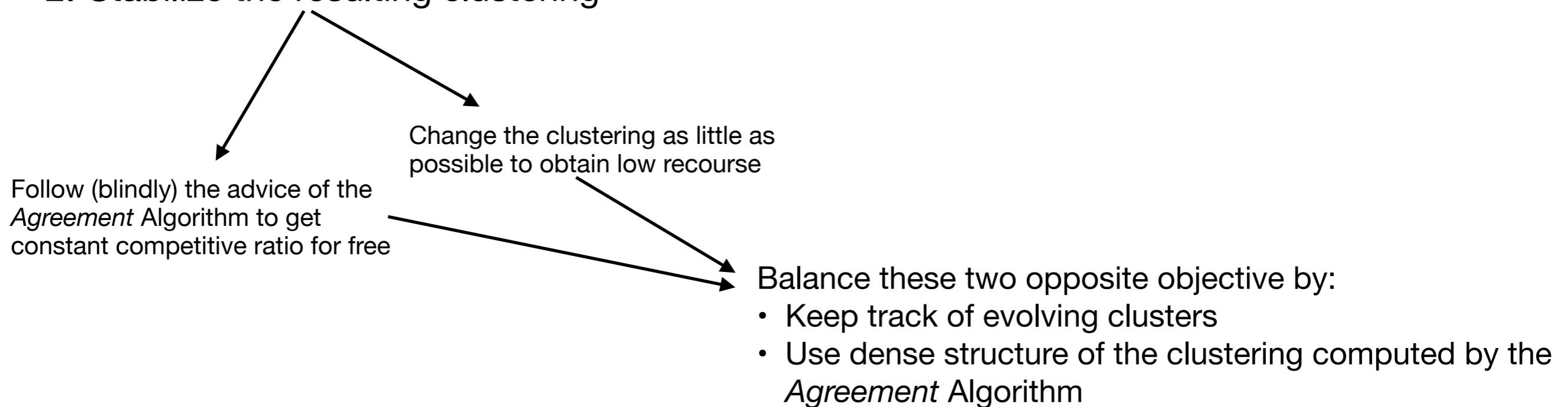
Online setting with recourse

Agreement Algorithm of Cohen-Addad et al 2021 as a subroutine



Online Agreement Algorithm

1. Rerun the Agreement Algorithm
2. Stabilize the resulting clustering

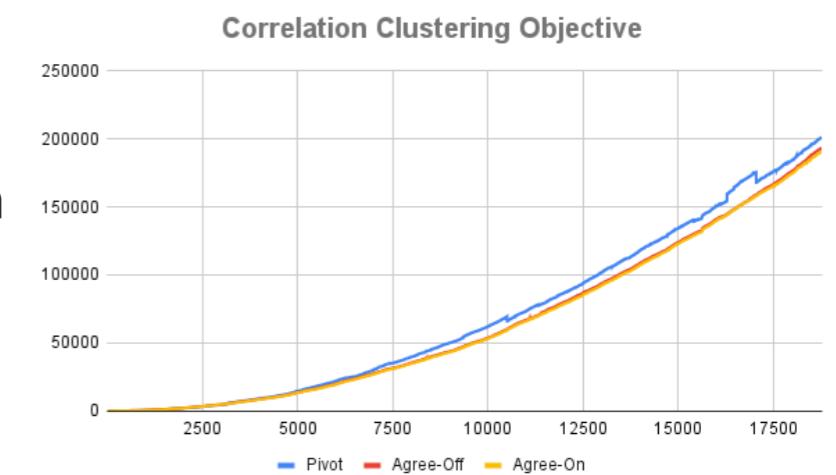


Online setting with recourse

Agreement Algorithm of Cohen-Addad et al 2021 as a subroutine

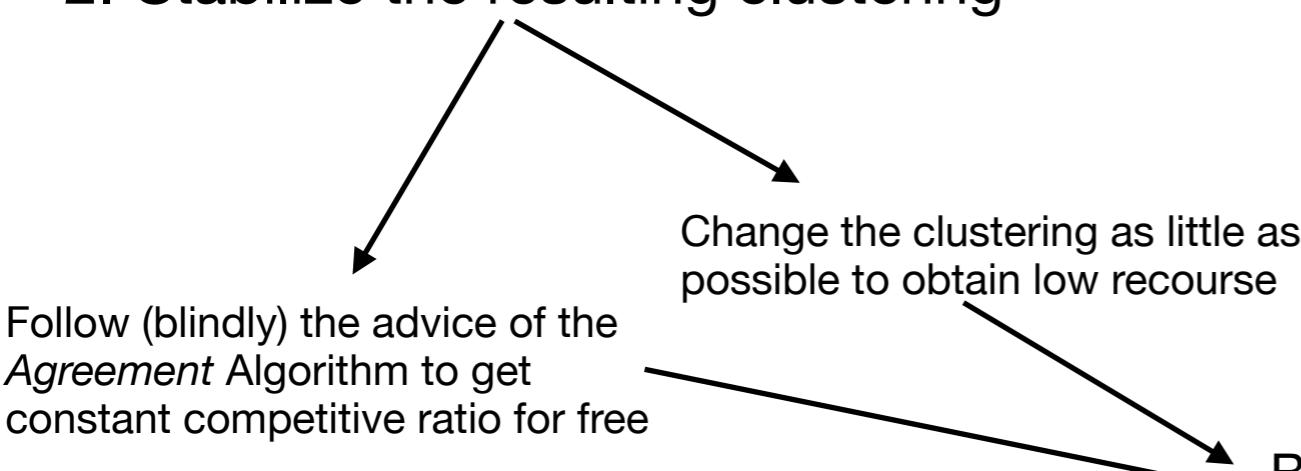
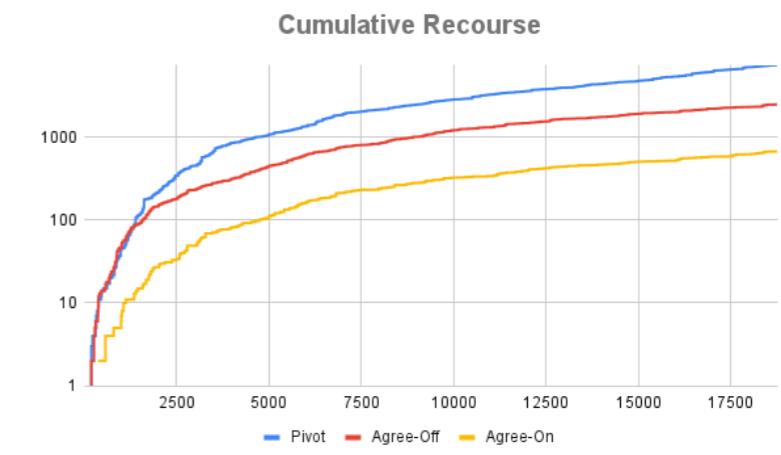
Creates dense clusters with few outgoing edges

Constant factor approximation



Online Agreement Algorithm

1. Rerun the Agreement Algorithm
2. Stabilize the resulting clustering



Balance these two opposite objective by:

- Keep track of evolving clusters
- Use dense structure of the clustering computed by the *Agreement* Algorithm

Thank you for your attention!