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Correlation Clustering - Problem Statement

Input: a complete signed graph G = (V, E, s) where s(e) = ‘+’ or ‘-‘ for every edge e
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Goal: output a clustering which minimises disagreements

‘+’ edge between two 
nodes assigned to 
different clusters

‘-‘ edge between two 
nodes assigned to the 

same cluster

0 disagreements 😀
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Correlation clustering is well studied.


• Introduced by Bansal et al. 2004. The problem is NP-HARD.


• Pivot algorithm is a 3-approximation on expectation. (Ailon et al. 2008)


• LP based 2.06-approximation algorithm (Chawla et al 2015)
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Other settings


• Distributed: Chierichietti et al 2014, Ahi et al. 2015, Pan et al. 2015, Cohen-
Addad et al. 2021


• Online: Mathieu et al. 2010




Online setting


• At each time t: a node arrives, revealing all its incident edges to 
previously arrived nodes.


• Clustering decisions are irrevocable: 

• create a new singleton cluster with the newly arrived node; or

• Add that node to a preexisting cluster.


• Mathieu et al. proved that any online algorithm is ￼ - competitive. 
Why: difficult to distinguish if an edge is a bridge between two cliques 
or it is part of a clique.

Ω(n)

😩
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Online setting with recourse


• At each time t: a node arrives, revealing all its incident edges to 
previously arrived nodes.


• Clustering decisions are NOT irrevocable.

• Goal: having at all times a constant factor approximation while 

minimising the worst case recourse of a node.

# times a node changes 
cluster

🧐

Contributions: 

•A constant factor approximation algorithm which 

achieves worst case log(n) recourse per node.

•A matching lower bound.
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Worst case linear recourse

Constant factor approximation
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Thank you for your attention!


