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General idea
• Recently, independence-driven importance weighting algorithms have shown 

empirical effectiveness to deal with covariate-shift generalization.
• The theoretical explanations for such effectiveness are still missing.
• In this paper, we propose to explain these algorithms as processes of feature 

selection.
• The set of selected features is minimal and optimal to deal with covariate-shift 

generalization for common loss functions.
• This variable set is named as the minimal stable variable set.
• The minimal stable variable set is closely related to the Markov boundary.
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Background --- covariate-shift generalization
• Covariate shift
• Suppose the test distribution 𝑃!" differs from the training distribution 𝑃!# in covariate shift 

only, i.e.,
𝑃!" 𝑋, 𝑌 = 𝑃!" 𝑋 𝑃!#(𝑌|𝑋)

• Covariate-shift generalization problem
• To guarantee the performance on the unknown test distribution 𝑃!".
• 𝑃!" differs from 𝑃!# in covariate shift.
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Background --- Independence-driven IW algorithms
• The algorithms usually consist of two steps
• Importance weighting
• Learn weight 𝑤(𝑋) to make 𝑋 statistically independent of each other.

• Weighted least squares
𝛽! = argmin

"
𝔼#!" 𝑤 𝑋 𝛽$𝑋 − 𝑌 %

• To prove the effectiveness of independence-driven IW algorithms, answer:
• To deal with covariate-shift generalization, what set of variables is optimal?
• Can independence-driven IW algorithms identify the variable set?
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Optimal variable set for covariate-shift generalization

• Observe that 𝔼0!"[𝑌|𝑋] is the optimal solution under several common loss 
functions in the test distribution 𝑃12.

• Properties of the optimal variable set --- minimal stable variable set
• 𝔼$!" 𝑌 𝑋 = 𝔼$!" 𝑌 𝑆
• A subset of variables 𝑆 ⊆ 𝑋 that can fit the target 𝔼#!#[𝑌|𝑋] if and only if it satisfies 𝔼#!" 𝑌 𝑋 =
𝔼#!" 𝑌 𝑆 .

• the minimal set of variables that satisfies 𝔼$!" 𝑌 𝑋 = 𝔼$!" 𝑌 𝑆
• To relieve the negative impact of other variables in the test distribution
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Independence-driven IW algorithms: feature 
selection
• Recall the process of Independence-driven IW algorithms
• Importance weighting
• Learn weight 𝑤(𝑋) to make 𝑋 are statistically independent of each other.

• Weighted least squares
𝛽! = argmin

"
𝔼#!" 𝑤 𝑋 𝛽$𝑋 − 𝑌 %

• Use 𝛽9 to select features
• Select feature 𝑋% if the corresponding coefficient 𝛽&(𝑋%) is not 0. 
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Independence-driven IW algorithms: feature 
selection
• Under ideal conditions (perfectly learned sample weights, and infinite 

samples),
• if a variable 𝑋% is not in the minimal stable variable set, then independence-driven IW 

algorithms could filter it out with any weighting function that satisfies the independence 
condition, and

• if a variable 𝑋% is in the minimal stable variable set, then there exist weighting functions with 
which independence-driven IW algorithms could identify 𝑋%.

• We further provide non-asymptotic properties when the ideal conditions are 
not satisfied.
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Experimental results
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• The minimal stable variable set is optimal for the covariate-shift generalization.
• Independence-driven IW algorithms (DWR [1] and SRDO [2]) could identify 

the minimal stable variable set better than other baselines.

[1] Kuang, et al. Stable prediction with model misspecification and agnostic distribution shift. AAAI. 2020.
[2] Shen, et al. Stable learning via sample reweighting. AAAI. 2020.



Thanks!
Paper is available at https://arxiv.org/abs/2111.02355

Code is available at https://github.com/windxrz/independence-driven-IW
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