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General idea

- Recently, independence-driven importance weighting algorithms have shown
empirical effectiveness to deal with covariate-shift generalization.

- The theoretical explanations for such effectiveness are still missing.

- In this paper, we propose to explain these algorithms as processes of feature

selection.

- The set of selected features is minimal and optimal to deal with covariate-shift
generalization for common loss functions.

- This variable set is named as the minimal stable variable set.
- The minimal stable variable set is closely related to the Markov boundary.



Background --- covariate-shift generalization

- Covariate shift

- Suppose the test distribution Pt¢ differs from the training distribution P" in covariate shift
only, i.e.,
Pte(X,Y) = P(X)PI"(Y|X)
- Covariate-shift generalization problem
- To guarantee the performance on the unknown test distribution Pt.
- Pte differs from P" in covariate shift.



Background --- Independence-driven IW algorithms

- The algorithms usually consist of two steps

- Importance weighting
- Learn weight w(X) to make X statistically independent of each other.

- Weighted least squares
B = argmin Eper [w(X)(B7X — ¥)?]

- To prove the effectiveness of independence-driven IW algorithms, answer:
- To deal with covariate-shift generalization, what set of variables is optimal?
- Can independence-driven IW algorithms identify the variable set?



Optimal variable set for covariate-shift generalization

- Observe that E,c[V|X] is the optimal solution under several common loss
functions in the test distribution Pt®.

- Properties of the optimal variable set --- minimal stable variable set
¢ IEPtr[YlX] — IEPtr[Yl.S]

- A subset of variables S € X that can fit the target E,«[V|X] if and only if it satisfies Eper[V[X] =
Eper[Y]S].

- the minimal set of variables that satisfies Eper[YV|X] = Eper[V]S]
- To relieve the negative impact of other variables in the test distribution



Independence-driven IW algorithms: feature

selection

- Recall the process of Independence-driven IW algorithms

- Importance weighting
- Learn weight w(X) to make X are statistically independent of each other.
- Weighted least squares
B, = arg mﬂin Eper[W(X)(BTX — Y)?]

- Use B,, to select features
- Select feature X; if the corresponding coefficient g8, (X;) is not 0.



Independence-driven IW algorithms: feature

selection
- Under ideal conditions (perfectly learned sample weights, and infinite

samples),
- if a variable X; is not in the minimal stable variable set, then independence-driven W
algorithms could filter it out with any weighting function that satisfies the independence

condition, and
- if a variable X; is in the minimal stable variable set, then there exist weighting functions with
which independence-driven IW algorithms could identify X;.

- We further provide non-asymptotic properties when the ideal conditions are
not satisfied.



Experimental results

- The minimal stable variable set is optimal for the covariate-shift generalization.

- Independence-driven IW algorithms (DWR [1] and SRDO [2]) could identify
the minimal stable variable set better than other baselines.
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Thanks!

Paper is available at https://arxiv.org/abs/2111.02355
Code is available at https://github.com/windxrz/independence-driven-IW
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