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Spatial Graph Convolution and Graph Filters
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Spatial Graph Convolution

Let 𝑳 = 𝑰 − 𝑫ି଴.ହ𝑨𝑫ି଴.ହ is the graph Laplacian and 𝑼𝜦𝑼ୃ is its eigenvalue decomposition. 

Then current Spatial Graph convolutions (like GCN,APPNP and others) can be regarded as graph 
conovlutions with graph Laplacian’s polynomial transformation 𝑔 𝑳 can be formulated as:

𝐇 = 𝑔 𝑳 𝑿 = 𝑼𝑔(𝜦)𝑼ୃ𝑿

with 𝑔 𝜦 = 𝐷𝑖𝑎𝑔 𝑔 𝜆ଵ , … , 𝑔 𝜆௡ . Since 𝑿෡ = 𝑼ୃ𝑿 is graph Fourier Transformation and 𝑼𝑿෡ is 
inverse. We can regard g is the filter function on the graph spectral domain. We call 𝑔 as graph 
filters in the following.

However, former analysis on graph filters mainly focus on its global tendency. While ours focus on 
𝑔’s locality properties.
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Concentration Attributes
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Maximum Response, Centre and Bandwidth

• Maximum Response ℛ௚:

ℛ௚ = max
ఒ∈[଴,ଶ]

|𝑔(𝜆)|

• Graph filter 𝑔’s centre 𝑏:
𝑔 𝑏 = ℛ௚

• Bandwidth ℬ𝒲௚:

ℬ𝒲௚ = න 𝕀 𝑔 𝜆 ,
ℛ௚

2
𝑑𝜆

ଶ

଴

𝕀 𝛾ଵ, 𝛾ଶ = ቊ
0,  𝛾ଵ < 𝛾ଶ

1,          𝛾ଵ < 𝛾ଶ
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Analysis on Different Graph Propagations
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Like SGC, we neglect the non-linear activation in our following analysis. The concentration attributes for 
different models are listed as follows: 

Weaknesses of Current Graph Propagations:
• Filter Centres are not flexible:     

• Filter centres are unchangeable or only have limited 
choices.

• Exists in all former models

• Bandwidth are not flexible:
• Bandwidth are unchangeable or only have limited choices.
• Exists in GCN, ChebNet, BernNet, FAGCN.

• Bandwidth choice and maximum response 
are not decoupled:

• Exists in PPR, ARMA.
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Gaussian Graph Propagation with centre b can be formulated as:

𝐆
ି୘ 𝐋ିୠ𝐈 𝟐

Its graph Filter can be denoted as:

𝑔ீ೅,್
𝜆 = 𝑒ି் ఒି௕ మ

Its centre is b, maximum response is 1 and its bandwidth is:

ℬ𝒲௚ಸ೅,್
=

𝑏,                                 𝑏 <
𝑙𝑜𝑔 2

𝑇

2
𝑙𝑜𝑔 2

𝑇
,       

𝑙𝑜𝑔 2

𝑇
≤ 𝑏 ≤ 2 −

𝑙𝑜𝑔 2

𝑇

2 − 𝑏,                            𝑏 > 2 −
𝑙𝑜𝑔 2

𝑇
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Our Proposed Graph Gaussian Convolutions
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In practice, we can use K-order Taylor expansion to approximate the Gaussian Graph Filter: 

𝐇 ≈ ෍
𝑇௞

𝑘!

௄

௞ୀ଴

𝐋 − b𝐈 ଶ௞𝐗

Since Gaussian Bases are also a series of universal approximation bases, we use several graph 
gaussian filters to form our Graph Gaussian Convolution to approximate any graph filter:

𝐇 ≈ ෍ 𝜃௜ ෍
𝑇௜

௞

𝑘!

௄

௞ୀ଴

𝐋 − b௜𝐈 ଶ௞𝐗 

ே

௜ୀଵ

That is the formulation of our Graph Gaussian Convolution (𝐺ଶ𝐶𝑜𝑛𝑣) and we can use it to form our 
Graph Gaussian Convolution Network (𝐺ଶ𝐶𝑁).
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Empirical Results

You can obtain other empirical results and analysis in our paper.



Peking University College of engineeringPeking University

Thanks for Watching！
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