

Spatial Graph Convolution and Graph Filters

Spatial Graph Convolution

Let $L = I - D^{-0.5}AD^{-0.5}$ is the graph Laplacian and $U\Lambda U^{T}$ is its eigenvalue decomposition.

Then current Spatial Graph convolutions (like GCN, APPNP and others) can be regarded as graph conovlutions with graph Laplacian's polynomial transformation g(L) can be formulated as:

$$\mathbf{H} = g(\mathbf{L})\mathbf{X} = \mathbf{U}g(\mathbf{\Lambda})\mathbf{U}^{\mathsf{T}}\mathbf{X}$$

with $g(\Lambda) = Diag(g(\lambda_1), ..., g(\lambda_n))$. Since $\hat{X} = U^T X$ is graph Fourier Transformation and $U\hat{X}$ is inverse. We can regard g is the filter function on the graph spectral domain. We call g as graph filters in the following.

However, former analysis on graph filters mainly focus on its global tendency. While ours focus on g's locality properties.

Concentration Attributes

Maximum Response, Centre and Bandwidth

Maximum Response \mathcal{R}_q :

$$\mathcal{R}_g = \max_{\lambda \in [0,2]} |g(\lambda)|$$

Graph filter *g*'s centre *b*:

$$g(b) = \mathcal{R}_g$$

Bandwidth \mathcal{BW}_g :

$$\mathcal{BW}_g = \int_0^2 \mathbb{I}\left(g(\lambda), \frac{\mathcal{R}_g}{\sqrt{2}}\right) d\lambda$$

$$\mathbb{I}(\gamma_1, \gamma_2) = \begin{cases} 0, & \gamma_1 < \gamma_2 \\ 1, & \gamma_1 < \gamma_2 \end{cases}$$

Analysis on Different Graph Propagations

Like SGC, we neglect the non-linear activation in our following analysis. The concentration attributes for different models are listed as follows:

Table 8. Concentration Attributes for Bernstein Basis.

Index	0	1	2	3	4	5	6	7	8	9	10
Concentration Center	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
PassBand	[0.0, 0.069]	[0.079, 0.390]	[0.219, 0.635]	[0.381, 0.855]	[0.555, 1.062]	[0.741, 1.258]	[0.938, 1.445]	[1.145, 1.619]	[1.365, 1.781]	[1.610, 1.921]	[1.931, 2.0]
Maximum Response	1	0.387	0.301	0.267	0.251	0.246	0.251	0.267	0.301	0.387	1

Table 9. Concentration attributes for different graph propagation.

	Graph Propagation Kernel (Or Basis)	\mathcal{R}	b	\mathcal{BW}
GCN	$(2\mathbf{I} - \mathbf{L})^K$	2^K	0	$2-2^{1-\frac{1}{2K}}$
PPR	$(\mathbf{I} - (1 - \alpha)(1 - \mathbf{L}))^{-1}$	$\frac{1}{\alpha}$	0	$\frac{(\sqrt{2}-1)\alpha}{1-\alpha}$
ARMA	$\frac{b_K}{1-a_K\mu}$	$\frac{b_K}{1- a_K }$	0 or 2	$\frac{(\sqrt{2}-1)(1- a_K)}{ a_K }$
FAGCN	$\frac{(1-\lambda+\epsilon)^2}{(\lambda-1+\epsilon)^2}$	$(1+\epsilon)^2$	0 or 2	$(2^{1/4} - 1)(1 + \epsilon) \in [0.19, 0.38]$
Heat Kernel	$e^{-T\mathbf{L}}$	1	0	$rac{log(\sqrt{2})}{T}$
ChebNet	$egin{aligned} \mathbf{C}^{(0)} &= \mathbf{I} \ \mathbf{C}^{(1)} &= 2\mathbf{L}/\lambda_{\max} - \mathbf{I} \ \mathbf{C}^{(k)} &= 2\mathbf{C}^{(2)}\mathbf{C}^{(s-1)} - \mathbf{C}^{(s-2)} \end{aligned}$	1	[0, 2] $1, -1$	$2 - \sqrt{2} \\ \dots$
BernNet	$\frac{1}{2^K} \binom{K}{k} (2\mathbf{I} - \mathbf{L})^{K-k} \mathbf{L}^k$	Table 8	$\frac{2}{K}$	Table 8

Weaknesses of Current Graph Propagations:

- Filter Centres are not flexible:
 - Filter centres are unchangeable or only have limited choices.
 - Exists in all former models
- Bandwidth are not flexible:
 - Bandwidth are unchangeable or only have limited choices.
 - Exists in GCN, ChebNet, BernNet, FAGCN.
- Bandwidth choice and maximum response are not decoupled:
 - · Exists in PPR, ARMA.

Our Proposed Graph Gaussian Filter

Gaussian Graph Propagation with centre b can be formulated as:

$$\mathbf{H}_{\mathbf{G}} = \mathbf{e}^{-\mathrm{T}(\mathbf{L} - \mathbf{b}\mathbf{I})^2} \mathbf{X}$$

Its graph Filter can be denoted as:

$$g_{G_{T,b}}(\lambda) = e^{-T(\lambda - b)^2}$$

Its centre is b, maximum response is 1 and its bandwidth is:

$$\mathcal{BW}_{g_{G_{T,b}}} = \begin{cases} b, & b < \sqrt{\frac{\log \sqrt{2}}{T}} \\ 2\sqrt{\frac{\log \sqrt{2}}{T}}, & \sqrt{\frac{\log \sqrt{2}}{T}} \le b \le 2 - \sqrt{\frac{\log \sqrt{2}}{T}} \\ 2 - b, & b > 2 - \sqrt{\frac{\log \sqrt{2}}{T}} \end{cases}$$

Our Proposed Graph Gaussian Convolutions (基本主义)

In practice, we can use K-order Taylor expansion to approximate the Gaussian Graph Filter:

$$\mathbf{H} \approx \sum_{k=0}^{K} \frac{T^k}{k!} (\mathbf{L} - \mathbf{bI})^{2k} \mathbf{X}$$

Since Gaussian Bases are also a series of universal approximation bases, we use several graph gaussian filters to form our Graph Gaussian Convolution to approximate any graph filter:

$$\mathbf{H} \approx \sum_{i=1}^{N} \theta_i \sum_{k=0}^{K} \frac{T_i^k}{k!} (\mathbf{L} - \mathbf{b}_i \mathbf{I})^{2k} \mathbf{X}$$

That is the formulation of our Graph Gaussian Convolution (G^2Conv) and we can use it to form our Graph Gaussian Convolution Network (G^2CN).

Empirical Results

Empirical Results

Table 4. Test accuracy (%) comparison on heterophily datasets. Reported results are averaged over 10 runs.

Dataset	GCN	GAT	APPNP	FAGCN	ARMA	DGC	BernNet	G ² CN
Chameleon	42.98 ± 1.41	47.62 ± 0.83	43.07 ± 1.55	63.3 ± 1.41	55.1 ± 1.32	67.08 ± 1.58	54.11 ± 1.73	73.61 ± 0.89
Squirrel	28.41 ± 0.57	27.33 ± 0.81	31.71 ± 0.47	39.7 ± 0.67	35.5 ± 0.81	50.51 ± 0.81	41.35 ± 0.81	66.91 ± 1.13
Actor	33.23 ± 1.16	33.93 ± 2.47	39.66 ± 0.55	40.11 ± 0.77	40.79 ± 0.89	40.35 ± 0.73	$\textbf{41.79} \pm \textbf{1.01}$	41.44 ± 0.76
Texas	77.38 ± 3.28	80.82 ± 2.13	90.98 ± 1.64	96.5 ± 0.47	92.3 ± 0.66	94.74 ± 0.33	96.22 ± 0.79	96.72 ± 0.73
Cornell	65.90 ± 4.43	78.21 ± 2.95	91.81 ± 1.96	93.3 ± 1.21	93.4 ± 1.13	92.45 ± 1.21	92.29 ± 2.74	$\textbf{94.11} \pm \textbf{1.81}$

You can obtain other empirical results and analysis in our paper.

Thanks for Watching!