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Introduction

• MOO / MTL has become very popular modeling technique 
– MOO: Product search models are trained with multi-objectives
– MTL: Popular way to training deep learning models

• Trade-off: common property in MOO / MTL
– Many models with different trade-offs
– Need to specify preference to select a model for experiments,

deployment, etc.
• Challenges

1. How to explore (all) trade-offs over multi-objectives / tasks
2. How to train a (specific) model that aligns with user preference
3. How to improve all objective / tasks when re-train / fine-tune existing 

models



MOO / MTL problem setting

• Given a model parameter vector 𝒙 ∈ 𝑅!, loss for m objectives / tasks: 𝑙" 𝒙 , 𝑖 = 1,… ,𝑚
• Goal: min 𝒍(𝒙) = 𝑙# 𝒙 ,… , 𝑙$ 𝒙 𝑛 ≫ 𝑚
• Solutions typically have trade-offs, where there is no better solution (i.e., dominates) –

Pareto optimal (PO) solution
• Pareto Front (PF) is a set of PO solutions.
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Example of preferences (Linear scalarization)

• Linear scalarization (𝑙!" = 𝑟#𝑙# + 𝑟$𝑙$)
• Higher 𝑟, the smaller 𝑙.
• “level set” 𝑟#𝑙# + 𝑟$𝑙$ = 𝑐𝑜𝑛𝑠𝑡, on a tangential hyperplane
• Cannot explore non-convex portion of PF
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Example of preference (weighted Chebyshev)

• Ratio between loss (𝑟#𝑙# = 𝑟$𝑙$) – “weighted Chebyshev (WC)”
• Higher 𝑟, the smaller 𝑙.
• Level set on a hyper-rectangular box: 

𝑟#𝑙# = 𝑟$𝑙$ = 𝑐 ⇒ 𝑙#, 𝑙$ = %
&"
, %&# ∶ 𝒓'#ray

• Can explore full PF by various r-1 rays
• EPO Search (ICML 2020) solves WC
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Example of preference (Reference point)

• Preference from Reference point – Extended Weighted Chebyshev (XWC)
• Designed to find solution better than the reference point
• Can explore a specific portion of PF, pivoted on the reference point
• Useful for model retraining / finetuning on an existing baseline / pretrained model
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Gradient based method to solve PO: MGDA

• Multiple Gradient Descent Algorithm (MGDA): 
– Gradient matrix: 𝑲 = 𝑓(𝛻𝑙#, … , 𝛻𝑙$ ) ∈ 𝑅$×$

– Pareto stationarity: 
𝑲𝜶 = 0, 𝒆𝑻𝜶 = 1, 𝜶 ≥ 𝟎, 𝒆 = [1, … , 1]

– MGDA solves:  min
𝜶

𝑲𝜶 (, 𝑠. 𝑡. 𝒆𝑻𝜶 = 1, 𝜶 ≥ 𝟎

– Once we find 𝜶, run gradient descent 
𝑥!)* ≔ 𝑥+,- − 𝜂𝑮𝜶

– [challenge] Although MGDA finds any PO, no control on what solution to discover.



Improvement over MGDA

• Existing approaches try to modify 
MGDA (i.e. Pareto stationarity) by 
adding extra constraints
– PMTL (Lin et al., NeurIPS 2019), etc.

• Note Pareto stationarity itself is a part 
of optimality condition in “some”  
optimization problem

• We formulate “preference” first, then 
derive Pareto stationarity

Pareto stationarity

Extra constraints

Diversified PO solutions

Preference optimization

Pareto stationarity

Preferred PO solutions

Existing work

Our framework



Implementation of WC: WC-MGDA

• Weighted Chebyshev problem: ℓ.-norm minimization of weighted loss functions

min𝜌 𝑠. 𝑡. 𝒓 ⊙ 𝒍(𝒙) ≤ 𝜌𝒆

• By KKT conditions and 𝑲𝒓 = diag 𝒓 𝑲diag(𝒓) , Wolfe Dual is

max𝜶0(𝒓 ⊙ 𝒍(𝒙))
𝑠. 𝑡. 𝒆0𝜶 = 1, 𝜶 ≥ 0,𝑲𝒓𝜶 = 𝟎

• Like MGDA, we minimize ℓ(-norm of 𝑲𝒓𝜶:

max𝜶0 𝒓⊙ 𝒍 𝒙 − 𝑢𝛾
𝑠. 𝑡. 𝒆0𝜶 = 1, 𝜶 ≥ 0, 𝑲𝒓𝜶 ( ≤ 𝛾

– “trade-off” 𝑢 is auto-tuned

“MGDA” portion to 
optimize Pareto stationarity 



Formulation of XWC: XWC-MGDA

• Extend WC by two modifications:
– Including reference point (𝒃) to the formulation
– Setting lower bound of 𝜶 to ensure strict optimality (𝜶 ≥ 𝒘)

• The XWC-MGDA problem is;
max𝜶( 𝒓⊙ (𝒍 𝒙 − 𝒃) − 𝑢𝛾
𝑠. 𝑡. 𝒆(𝜶 = 1, 𝜶 ≥ 𝒘, 𝑲𝒓𝜶 $ ≤ 𝛾



Experimental results
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Experiment on non-convex synthetic data:
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Summary

• Proposed a new framework to formulate preferences in MOO / MTL

• XWC-MGDA allows us to explore PF pivoted on a given reference point

• Experimental results (see main paper) quantify competitive performance of XWC-MGDA


