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Introduction



Classification in Machine Learning

• Input space X ⊂ Rd to a label space Y := {1, . . . , K}.
• Classifier function f := (f1, . . . , fK) : X → RK such that the predicted

label for an input x is argmaxk fk(x).
• Input-label (x, y) is correctly classified if argmaxk fk(x) = y.
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Adversarial Attacks

Definition (Adversarial Attacks)
Let x ∈ X , y ∈ Y the label of x and let f be a classifier. An adversarial attack
at level ε is a perturbation τ such that ∥τ∥ ≤ ε such that:

argmax
k

fk(x + τ) ̸= y

A classifier f is said to be certifiably robust at radius ε ≥ 0 at point x with label
y if for all τ such that ∥τ∥ ≤ ε :

argmax
k

fk(x + τ) = y
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Background



Lipschitz constant and Certification

Proposition (Tsuzuku et al. (2018))

Let f be an L-Lipschitz continuous classifier for the ℓ2 norm. Let ε > 0, x ∈ X
and y ∈ Y the label of x. If at point x, the margin Mf (x) satisfies:

Mf (x) := max(0, fy(x) − max
y′ ̸=y

fy′ (x)) >
√

2Lε

then we have for every τ such that ∥τ∥2 ≤ ε:

argmax
k

fk(x + τ) = y

Trade-off between a large margin and a small Lipschitz constant.
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Related Work on 1-Lipschitz Neural Networks

Previous approaches on 1-Lipschitz Neural Networks

• Spectral norm of weights matrices:
→→ Yoshida et al. (2017); Farnia et al. (2019); Anil et al. (2019)

• Orthogonal weights:
→→ Li et al. (2019); Trockman et al. (2021); Singla et al. (2021)
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Residual Networks flows

A Residual Network is defined as:{
x0 = x ∈ X
xt+1 = xt + Ft(xt)

where Ft(xt) is typically a two layer neural networks:

Ft(xt) = W2,tσ(W1,txt)

Definition (Continuous Residual Networks Haber et al. (2017))

Let (Ft)t∈[0,T ] be a family of functions on Rd, we define the continuous time
Residual Networks flow associated with Ft as:{

x0 = x ∈ X
dxt
dt

= Ft(xt) for t ∈ [0, T ]
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Lipschitzness of Continuous Residual Networks

Proposition

Let (Ft)t∈[0,T ] be a family of functions on Rd. Let us assume that
µtI ⪯ Sym(∇xFt(x)) ⪯ λtI for all x ∈ Rd, and t ∈ [0, T ]. Then the flow
associated with Ft satisfies for all initial conditions x0 and z0:

∥x0 − z0∥e

∫ t

0
µsds ≤ ∥xt − zt∥ ≤ ∥x0 − z0∥e

∫ t

0
λsds

Corollary

Let (ft)t∈[0,T ] be a family of convex differentiable functions on Rd and
(At)t∈[0,T ] a family of skew symmetric matrices. Let us define

Ft(x) = −∇xft(x) + Atx,

then the flow associated with Ft satisfies for all initial conditions x0 and z0:

∥xt − zt∥ ≤ ∥x0 − z0∥
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Hybrid schemes

Discretization Problem: Forward Euler Discretization:

xt+1 = xt + Ft(xt)

does not satisfy the previous Lipschitz property and Backward Euler is hardly
tractable. Solution: Hybrid schemes!{

xt+ 1
2

= step1(xt, ∇xft)
xt+1 = step2(xt+ 1

2
, At)

Proposition

Let t ∈ {1, · · · , T } Let us assume that ft is Lt-smooth. We define the
following discretized ResNet gradient flow using ht as a step size
xt+ 1

2
= xt − ht∇xft(xt). Consider now two trajectories xt and zt with initial

points x0 = x and z0 = z respectively, if 0 ≤ ht ≤ 2
Lt

, then
∥xt+ 1

2
− zt+ 1

2
∥2 ≤ ∥xt − zt∥2
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Discretization schemes for At

Midpoint Euler method. We thus propose to use Midpoint Euler method,
defined as follows:

xt+1 = xt+ 1
2

+ At

xt+1 + xt+ 1
2

2

⇐⇒ xt+1 =
(

I − At

2

)−1 (
I + At

2

)
xt+ 1

2
.

→→ Cayley Transform studied by Trockman et al. (2021) of At
2 that induces an

orthogonal mapping.

Exact Flow.
dut

ds
= Atus, u0 = xt+ 1

2
,

By taking the value at s = 1
2 , we obtained the following:

xt+1 := u 1
2

= e
A
2 xt+ 1

2
.

→→ Skew Orthogonal Convolution (SOC) studied by Singla et al. (2021).

A Dynamical System Perspective for Lipschitz Neural Networks 8



Parametrization for Convex Potential Layers

Gradient of ICNN (Amos et al., 2017):
Let ϕ a convex real function. Fw,b : x ∈ Rd 7→

∑k

i=1 ϕ(w⊤
i x + bi) defines a

convex function in x as the composition of a linear and a convex function. Its
gradient with respect to its input x is

x 7→
k∑

i=1

wiϕ
′(w⊤

i x + bi) = W⊤σ(Wx + b)

with σ := ϕ′. Assuming σ is L-Lipschitz, we have that Fw,b is L∥W∥2
2-smooth.

∥W∥2 is the spectral norm of W: ∥W∥2 := maxx̸=0
∥Wx∥2

∥x∥2

New 1-Lipschitz Layer: Convex Potential Layer

z = x − 2
∥W∥2

2
W⊤σ(Wx + b)
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Computation of CPLs

Use of Power Iteration algorithm for computing Spectral Norms.

• Quasi-free at training: single iteration for each layer at each step.
• Free at inference: we make 100 iterations for each layer but only once!
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Experimental Results (1)

4 versions of CPL networks (S, M, L, XL) with various depths and widths.

Figure 1: Certified Accuracy in function of the perturbation ε for our CPL networks and
its concurrent approaches on CIFAR10 and CIFAR100 datasets.
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Experimental Results (2)

Figure 2: Accuracy against PGD attack with 10 iterations in function of the
perturbation ε for our CPL networks and its concurrent approaches on CIFAR10 and
CIFAR100 datasets.
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Scalability of the Approach
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Figure 3: Standard test accuracy in function of the number of epochs (log-scale) for
various depths for our neural networks.
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Conclusion



Conclusion

A Dynamical System Perspective for Lipschitz Neural Networks

• Perspective from Dynamical System explain previous approaches
• SOTA results in classification and robustness in comparison which other

existing 1-Lipschitz approaches
• Our layers provides scalable approaches without further regularizations to

train very deep architectures
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Conclusion

Thank You!
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