Data Augmentation as Feature Manipulation

Ruoqi Shen
University of Washington

Sébastien Bubeck (MSR)

Suriya Gunasekar (MSR)

Data augmentation

	no augmentation	basic augmentation	advanced augmentation
resnet18 (11M)	90%	96%	98%
cait_xxs36 (17M)	77%	88%	97%
vit_tiny (6M)	75%	86%	96%

Data augmentation as feature manipulation

Consider three types of features

- 1. "good" & "easy to learn"– accurate features with large contribution to gradients
- 2. "good" & "hard to learn" accurate features with small contribution to gradients
- 3. "bad" & "easy to learn"
 - inaccurate features with large contribution to gradients

Gradient descent learns by fitting data with (1)&(3) first before using (2)

Data augmentation as feature manipulation

Consider three types of features

- 1. "good" & "easy to learn"
 - accurate features with large contribution to gradients
- 2. "good" & "hard to learn"
 - accurate features with small contribution to gradients
- 3. "bad" & "easy to learn"
 - inaccurate features with large contribution to gradients

Gradient descent learns by fitting data with (1)&(3) first before using (2)

Data augmentation as feature manipulation

Consider three types of features

- 1. "good" & "easy to learn"
 - accurate features with large contribution to gradients
- 2. "good" & "hard to learn"
 - accurate features with small contribution to gradients
- 3. "bad" & "easy to learn"
 - inaccurate features with large contribution to gradients

Gradient descent learns by fitting data with (1)&(3) first before using (2)

Data augmentation can be viewed as manipulation of relative contribution of "good" and "bad" features in the gradients, i.e., make (2) -> (1), or make (3) -> "bad" & "hard to learn"

Theory: Multi-view data model Allen-Zhu & Li (2019)

- Two classes $y \in \{-1,1\}$
- Inputs x has P patches $x = (x_1, x_2, ..., x_P) \in \mathbb{R}^{d \times P}$

Theory: Multi-view data model

Allen-Zhu & Li (2019)

- Two classes $y \in \{-1,1\}$
- Inputs x has P patches $x = (x_1, x_2, ..., x_P) \in \mathbb{R}^{d \times P}$
- K possible "Good features"

• "Bad features"

(noise/spurious feature)

Theory: Multi-view data model Allen-Zhu & Li (2019)

- Two classes $y \in \{-1,1\}$
- Inputs x has P patches $x = (x_1, x_2, ..., x_P) \in \mathbb{R}^{d \times P}$
- K possible "Good features"

• "Bad features"

(noise/spurious feature)

One patch contains the "good" feature:

$$yv_k$$
, $k \in \{1, ..., K\}$
 (ρ_k)

One patch contains the dominant "bad" feature:

$$\xi \sim \mathcal{N}\left(0, \frac{\sigma_{\xi}^2}{d}I\right)$$

Patchwise convolutional model

$$f(\mathbf{w}, \mathbf{x}) = \sum_{c} \sum_{p} \psi(\mathbf{x}_{p} \cdot \mathbf{w}_{c})$$

gradient descent on logistic loss

$$L(\mathbf{w}) = \sum_{(\mathbf{x}, y) \in \mathcal{D}_{\mathsf{train}} \text{ or } \mathcal{D}_{\mathsf{train}}^{(\mathsf{aug})}} \log(1 + \exp(-yf(\mathbf{w}, \mathbf{x})))$$

Patchwise convolutional model

Patchwise convolutional model

$$f(\mathbf{w}, \mathbf{x}) = \sum_{c} \sum_{p} \psi(\mathbf{x}_{p} \cdot \mathbf{w}_{c})$$

gradient descent on logistic loss

$$L(\mathbf{w}) = \sum_{(\mathbf{x}, y) \in \mathcal{D}_{\text{train}} \text{ or } \mathcal{D}_{\text{train}}^{(\text{aug})}} \log(1 + \exp(-yf(\mathbf{w}, \mathbf{x})))$$

Fraction of datapoints with v_k

* Learning dynamic of "good" feature v_k : $\frac{d}{dt}w_c \cdot v_k \approx \rho_k^{\prime} \psi'(|w_c \cdot v_k|)$

* Learning dynamic of noise
$$\xi^{(i)}$$
:
$$\frac{d}{dt}w_c \cdot \xi^{(i)} \approx \frac{1}{n}\sigma_\xi^2 y^{(i)}\psi'(|w_c \cdot \xi^{(i)}|)$$
Noise variance

Number of datapoints

Data augmentation:

- "good" and "hard" -> "good" and "easy": Increase ρ_k of rare views k.
- "bad" and "easy" -> "bad" and "hard": Increase n (through perturbing ξ).

Thank you