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The remarkable success of deep multimodal learning
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= Common belief: multi-modal is better than single since multiple signals
generally bring more information. [Huang et al, 2021]

® However: the use of multimodal data in practice will reduce the 2
performance of the model in some cases [Gat et al, 2020] [Han et al, 2021]



Uni-modal networks consistently outperform multimodal networks in

Practice [Wang et al, 2020]
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Uni-modal v.s. Naive Joint Training

Dataset | Multi-modal V@1 | BestUni V@1 | Drop
A + RGB 71.4 RGB 72.6 -1.2
Kinefics RGB+OF 713 RGB 72.6 -1.3
A + OF 58.3 OF 62.1 -3.8
A+RGB+OF 70.0 RGB 72.6 | -2.6

Our goal: theoretically explain this performance drop

m across different combinations of modalities
and on different tasks and benchmarks




Why Previous Analysis Cannot Explain?

® Previous analysis: focus on the generalization side
m Cause: Optimization issue
m Recent efforts: [Du et al, 2021] do not consider neural networks architecture

® Qur results: first theoretical treatment towards the degenerating aspect of
multi-modal learning in neural networks



Late fusion framework Learner Network
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|. K-class classification
2. Each modality is generated from a sparse coding model:
Xl _ Mlzl 4 61 X2 _ M222 4 62
(z1,2%) ~ P, & ~ Per forr € [2]

where z! and z? are sparse vectors and share some similarities.
3. Modality encoder: one-layer neural network, activated by smoothed RelLU



When only single modality is applied to training

® The uni-modal network will focus on learning the modality-associated features,
which leads to good performance.

® Training error is zero:
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When naive joint training is applied

® The neural network will not efficiently learn all features from different modalities:

® Training error is zero:

1 :
- Y KAy X < FUX) =0
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® For r € [2]|, with probability ps—, > 0, the test error of fFr(T)
is high:
1
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where p; 4+ p2 = 1 —0o(1), and p, > m= 90 vr € [2].
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Modality Competition:

multiple modalities will

compete with each other. Only

a subset of modalities that
correlate more with their
encoding network’s random
initialization will win.




Insufficient Structure

Top 10 Improved Class Accuracy
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Evidence that RGB has not been
learned
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Top 10 Dropped Class Accuracy
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Text loses the competition and has not

been explored

Original intention: the information
provided by the remaining sufficient
modalities can assist

Our results reveal: the modal not
only fails to exploit the extra
modalities, but also loses the
expertise of the original modality.
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Thanks!
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