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Active learning

* Acquiring labels for machine learning systems can be very expensive
(medical images require doctors)

* Active learning attempts to reduce the number of labels needed to
learn by adaptively choosing data points to label.

* Empirically, active learning sometimes helps but often doesn’t.

* Theoretical active learning often focuses on the type of dependence
of error on the number of samples (e.g., excess error decays as 2~ ").



Tsybakov Noise

* Tsybakov noise: k € [1, o) function of data distribution (Tsybakov, 2004)
* Intuitively, “shape” of noise near decision boundary

* Exponential gains possible for k = 1 (e.g., linear classifiers on the
uniform sphere (Balcan et al., 2007)).

* Existing lower bounds (for any algorithm) show that the excess error for
K

fixed Tsybakov noise k on the uniform sphere is () ((%)Z(K_1)> (Wang &
Singh, 2016) for n labeled points.



Motivation

 What is a “practical” value for k?

* Are there lower bounds (for any algorithm) for a simple, benign
setting?

* In addition to the dependence on the number of samples n, what are
the problem-dependent constants?



Our setting

* Inputs uniformly drawn from
d-dimensional unit sphere: X € S¢~1

e True parameters with fixed norm: w* € M - §¢-1

* Binary labels
Y € {—1,1}
* Logistic conditional label distribution:
Pr(Y = 1|x;w*) = a(w" - x)
1
1+e™ U
* For this setting, k = 2

o(u) =




Our results

* Define err™ as the Bayes error.
e Up to universal constants, the expected excess (w.r.t. Bayes) error is:
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More specific lower bounds are stronger!

Uniform sphere
Well-specified logistic regression
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Synthetic Experiments

Random sampling: ERM with logistic loss
Adaptive selection: uncertainty sampling variant
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Conclusion

* For practical distribution classes,
adaptive selection cannot achieve

a better rate than ® (1)
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* For our specific setting, we show that the ratio of the optimal excess
error of random sampling to the optimal excess error of adaptive
selection is between (0(1/err*) and O((log d)/err™).

* Perhaps, it is not possible to always achieve improvements with active

learning, but instead, the improvement depends on problem

dependent quantities.




Thank you for your attention

Come by poster #1213 at the poster session later today!
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