

Constants Matter: The Performance Gains of Active Learning

ICML 2022 Spotlight

Stephen Mussmann, Sanjoy Dasgupta

Active learning

- Acquiring labels for machine learning systems can be **very expensive** (medical images require doctors)
- Active learning attempts to **reduce the number of labels** needed to learn by adaptively choosing data points to label.
- Empirically, active learning sometimes helps but **often doesn't**.
- Theoretical active learning often focuses on the type of **dependence of error on the number of samples** (e.g., excess error decays as 2^{-cn}).

Tsybakov Noise

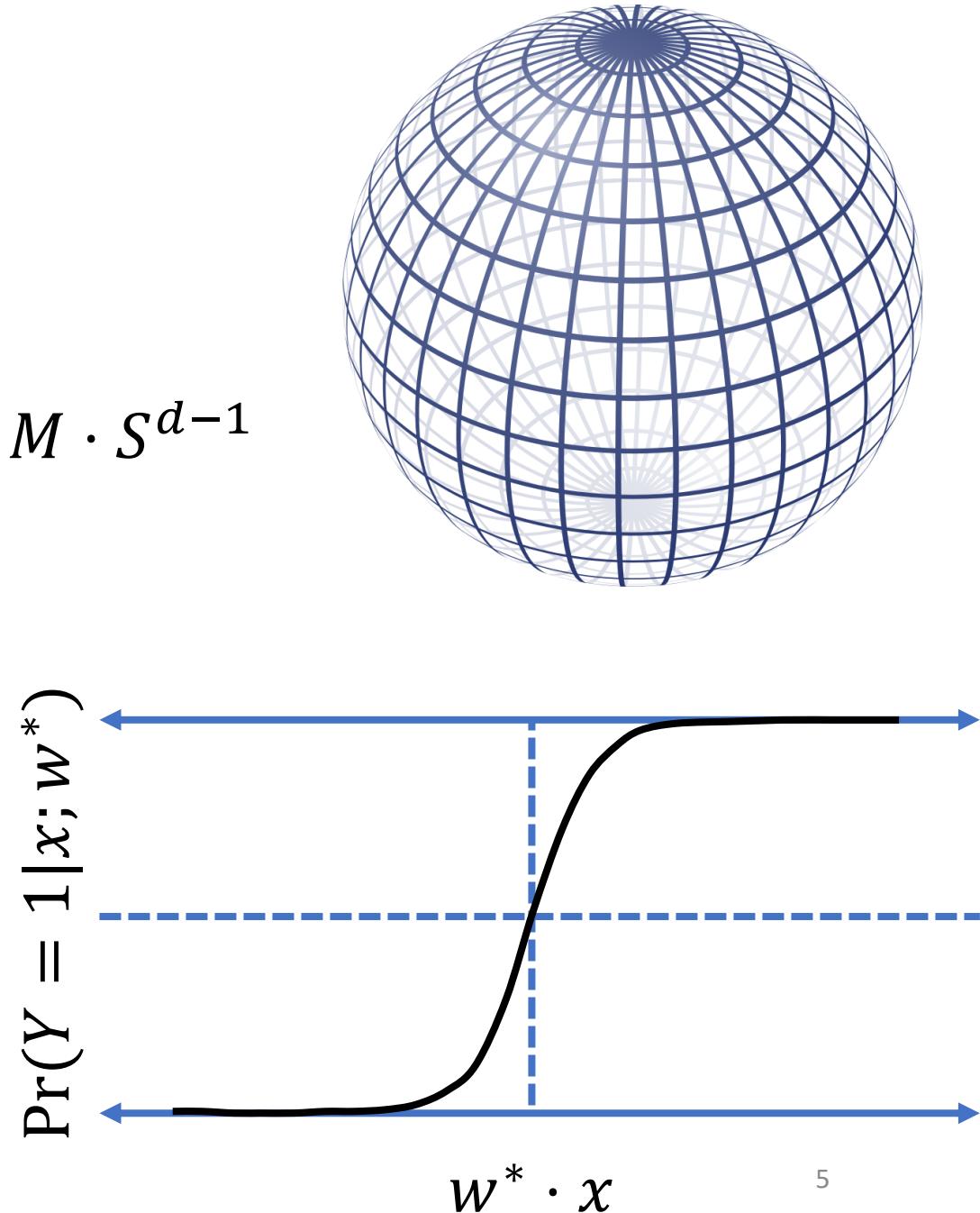
- Tsybakov noise: $\kappa \in [1, \infty)$ function of data distribution (Tsybakov, 2004)
 - Intuitively, “shape” of noise near decision boundary
- Exponential gains possible for $\kappa = 1$ (e.g., linear classifiers on the uniform sphere (Balcan et al., 2007)).
- Existing lower bounds (for any algorithm) show that the excess error for fixed Tsybakov noise κ on the uniform sphere is $\Omega\left(\left(\frac{1}{n}\right)^{\frac{\kappa}{2(\kappa-1)}}\right)$ (Wang & Singh, 2016) for n labeled points.

Motivation

- What is a “practical” value for κ ?
- Are there lower bounds (for any algorithm) for a simple, benign setting?
- In addition to the dependence on the number of samples n , what are the problem-dependent constants?

Our setting

- Inputs **uniformly** drawn from d -dimensional unit sphere: $X \in S^{d-1}$
- True parameters with fixed norm: $w^* \in M \cdot S^{d-1}$
- Binary labels
$$Y \in \{-1, 1\}$$
- Logistic conditional label distribution:
$$\Pr(Y = 1|x; w^*) = \sigma(w^* \cdot x)$$
$$\sigma(u) = \frac{1}{1+e^{-u}}$$
- For this setting, $\kappa = 2$

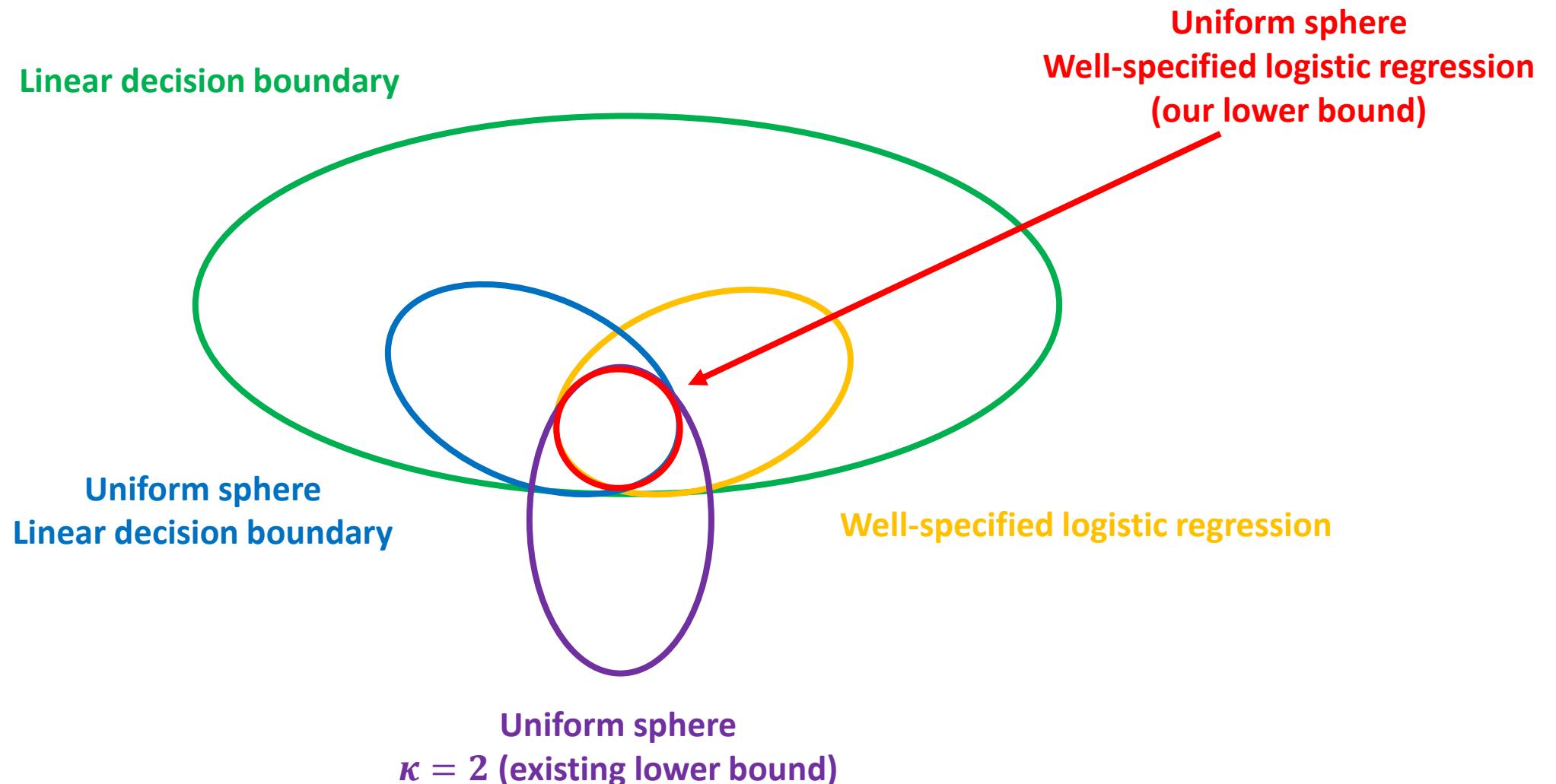


Our results

- Define err^* as the Bayes error.
- Up to **universal constants**, the expected excess (w.r.t. Bayes) error is:

	Random Sampling	Adaptive Selection
Upper Bound	$O\left(\frac{d \log d}{n}\right)$	$O\left(\text{err}^* \frac{d}{n}\right)$
Lower Bound	$\Omega\left(\frac{d}{n}\right)$	$\Omega\left(\text{err}^* \frac{d}{n}\right)$

More specific lower bounds are stronger!

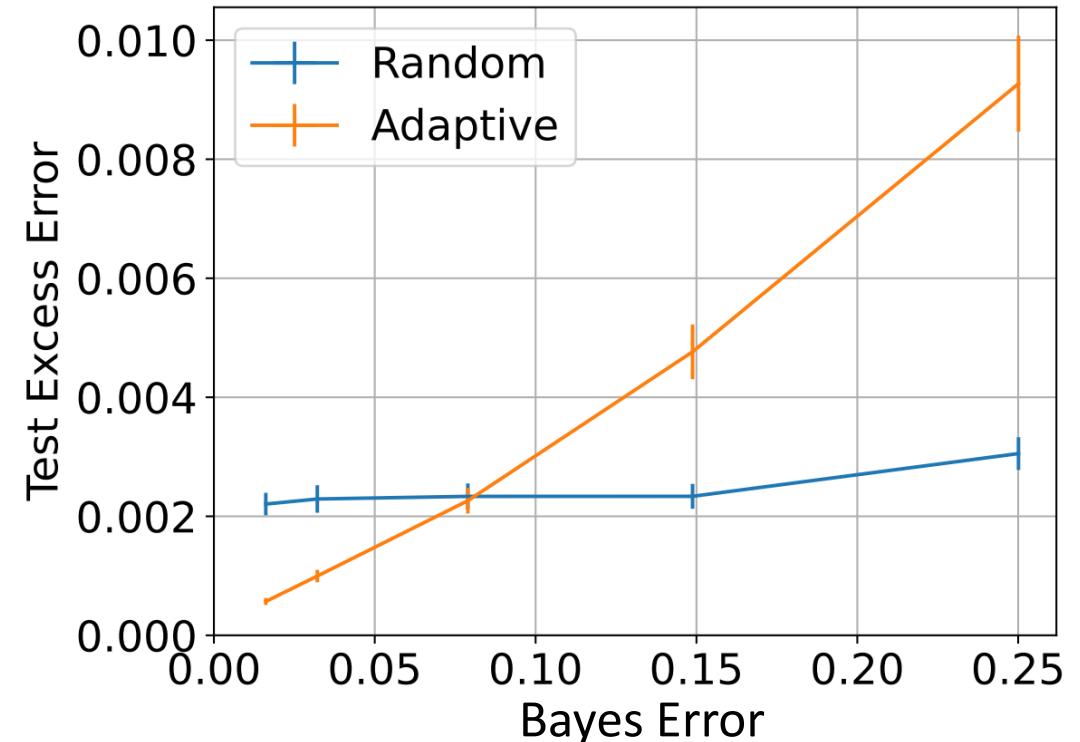


Synthetic Experiments

Random sampling: ERM with logistic loss

Adaptive selection: uncertainty sampling variant

	Random Sampling	Adaptive Selection
Upper Bound	$O\left(\frac{d \log d}{n}\right)$	$O\left(\text{err}^* \frac{d}{n}\right)$
Lower Bound	$\Omega\left(\frac{d}{n}\right)$	$\Omega\left(\text{err}^* \frac{d}{n}\right)$



Unless otherwise specified: $d = 10$, $n = 1000$, $\text{err}^* \approx 0.08$

Conclusion

- For practical distribution classes, adaptive selection **cannot achieve** a better rate than $\Theta\left(\frac{1}{n}\right)$.
- For our specific setting, we show that the ratio of the optimal excess error of **random sampling** to the optimal excess error of **adaptive selection** is between $\Omega(1/\text{err}^*)$ and $O((\log d)/\text{err}^*)$.
- Perhaps, it is not possible to always achieve improvements with active learning, but instead, the improvement depends on problem dependent quantities.

	Random Sampling	Adaptive Selection
Upper Bound	$O\left(\frac{d \log d}{n}\right)$	$O\left(\text{err}^* \frac{d}{n}\right)$
Lower Bound	$\Omega\left(\frac{d}{n}\right)$	$\Omega\left(\text{err}^* \frac{d}{n}\right)$

Thank you for your attention

Come by poster #1213 at the poster session later today!

Graduate Research Fellowship Program

