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Active learning

• Acquiring labels for machine learning systems can be very expensive
(medical images require doctors)

• Active learning attempts to reduce the number of labels needed to 
learn by adaptively choosing data points to label.

• Empirically, active learning sometimes helps but often doesn’t.

• Theoretical active learning often focuses on the type of dependence 
of error on the number of samples (e.g., excess error decays as 2−𝑐𝑛).
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Tsybakov Noise

• Tsybakov noise: 𝜅 ∈ [1,∞) function of data distribution (Tsybakov, 2004)
• Intuitively, “shape” of noise near decision boundary

• Exponential gains possible for 𝜅 = 1 (e.g., linear classifiers on the  
uniform sphere (Balcan et al., 2007)).

• Existing lower bounds (for any algorithm) show that the excess error for 

fixed Tsybakov noise 𝜅 on the uniform sphere is Ω
1

𝑛

𝜅

2 𝜅−1
(Wang & 

Singh, 2016) for 𝑛 labeled points.
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Motivation

• What is a “practical” value for 𝜅?

• Are there lower bounds (for any algorithm) for a simple, benign 
setting?

• In addition to the dependence on the number of samples 𝑛, what are 
the problem-dependent constants?
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Our setting
• Inputs uniformly drawn from 
𝑑-dimensional unit sphere: 𝑋 ∈ 𝑆𝑑−1

• True parameters with fixed norm: 𝑤∗ ∈ 𝑀 ⋅ 𝑆𝑑−1

• Binary labels

𝑌 ∈ {−1,1}

• Logistic conditional label distribution:

Pr 𝑌 = 1 x;w∗ = 𝜎(w∗ ⋅ 𝑥)

𝜎 𝑢 =
1

1+𝑒−𝑢

• For this setting, 𝜅 = 2

P
r(
𝑌
=
1
|𝑥
;𝑤

∗
)

𝑤∗ ⋅ 𝑥 5



Our results

• Define err∗ as the Bayes error.

• Up to universal constants, the expected excess (w.r.t. Bayes) error is:
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More specific lower bounds are stronger!

Uniform sphere
Well-specified logistic regression

(our lower bound)

Uniform sphere
𝜿 = 𝟐 (existing lower bound)

Well-specified logistic regression

Linear decision boundary

Uniform sphere
Linear decision boundary



Synthetic Experiments

Unless otherwise specified: 𝑑 = 10, 𝑛 = 1000, err∗ ≈ 0.08

Bayes Error
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Random sampling: ERM with logistic loss
Adaptive selection: uncertainty sampling variant
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Conclusion

• For practical distribution classes,
adaptive selection cannot achieve

a better rate than Θ
1

𝑛
.

• For our specific setting, we show that the ratio of the optimal excess 
error of random sampling to the optimal excess error of adaptive 
selection is between Ω(1/err∗) and 𝑂((log d)/err∗).

• Perhaps, it is not possible to always achieve improvements with active 
learning, but instead, the improvement depends on problem 
dependent quantities.
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Thank you for your attention

Come by poster #1213 at the poster session later today!
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