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Distributed Stochastic Gradient Descent (SGD)
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Byzantine Threat Model
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Averaging is not robust to one Byzantine machine!
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Byzantine-Resilient SGD
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e Replace averaging with a robust aggregation rule F




Brittleness of Previous Works

@ D Previous works make non-standard assumptions on

e The number of Byzantine machines

e The stochastic gradients

< E.g., sub-exponential, vanishing uncertainty
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Theoretically: Impossible to compare them
Empirically: Vulnerable to attacks
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Brittleness of Previous Works

Fall of Empires (1)
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(1) Xie, C., Koyejo, O., and Gupta, |. Fall of empires: Breaking byzantine-tolerant SGD by inner product manipulation. In Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel,

July 22-25, 2019, pp. 83, 2019a.

(2) Baruch, M., Baruch, G., and Goldberg, Y. A little is enough: Circumventing defenses for distributed learning. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing

Systems 2019, 8-14 December 2019, Long Beach, CA, USA, 2019.
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Our Contribution: RESAM
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‘4 Eliminate all non-standard assumptions

e Provide unified theoretical framework to
compare aggregation rules

e Optimal in number of Byzantine machines

e Works in practice
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Patch 1: Polyak’s Momentum
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Patch 2: Resilient Averaging Criterion

roy New resilience criterion that F must satisfy
'nﬁf Update Rule « Encompasses most existing rules
e / e Enables us to unify the field and
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Experiments: RESAM vs. Previous Works
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Abstract

Byzantine resilience emerged as a prominent topic
‘within the distributed machine learning commu-
nity. Essentially, the goal is to enhance distributed
optimization algorithms, such as distributed SGD,
in a way that guarantees convergence despite the
presence of some misbehaving (ak.a., Byzantine)
workers. Although a myriad of techniques ad-
dressing the problem have been proposed, the
field arguably rests on fragile foundations. These
techniques are hard to prove correct and rely on
assumptions that are (a) quite unrealistic, i.c., of-
ten violated in practice, and (b) heterogeneous,
ic., making it difficult to compare approaches.
We present RESAM (RESilient Averaging of Mo-
mentums), a unified framework that makes it sim-
ple to establish optimal Byzantine resilience, re-
lying only on standard machine learning assump-
tions. Our framework is mainly composed of
two operators: resilient averaging at the server
and distributed momentum at the workers. We
prove a general theorem stating the convergence
of distributed SGD under RESAM. Interestingly,
demonstrating and comparing the convergence of
many existing techniques become direct corollar-
ies of our theorem, without resorting to stringent
assumptions. We also present an empirical evalu-
ation of the practical relevance of RESAM.

1. Introduction

‘The vast amount of data collected every day, combined with
the increasing complexity of machine learning models, has
led to the emergence of distributed learning schemes (Abadi
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et al., 2015; Kairouz et al., 2021). In the now classical
parameter server distributed architecture, the learning proce-
dure consists of multiple data owners (or workers) collabo-
rating to build el with the help of acentral
(the parameter server), typically using the celebrated
tributed stochastic gradient descent (SGD) algorithm (Tsit-
siklis et al., 1986; Bertsekas & Tsitsiklis, 2015). The server
essentially maintains an estimate of the model parameter
‘which is updated iteratively using the average of the stochas-
tic gradients computed by the workers.

Nevertheless, this algorithm is vulnerable to "misbehaving"
‘workers that could (either intentionally or inadvertently) sab-
otage the learning by sending arbitrarily bad gradients to the
server (Feng et al, 2015; Su & Vaidya, 2016). These work-
ers are commonly referred to as Byzantine (Lamport et al.,
1982). To address this crtical issue, a large body of research
has been devoted to adapting distributed SGD to make it
converge despite the presence of (a fraction of) Byzantine
workers, e.g., (Blanchard et al., 2017; Chen et al,, 2017;
EI Mhamdi et al., 2018; Yin et al,, 2018; Xie et al., 2018;
Alistarh et al., 2018; Diakonikolas et al., 2019b; Allen-Zhu
et al., 2020; Prasad et al., 2020; Karimireddy et al., 2021).
The general idea consists in replacing the averaging step
of the algorithm with a robust aggregation rule, basically
seeking to filter out the bad gradients.

Demonstrating the correctness of the resulting algorithms
reveals however very challenging, and previous works rely
on unusual assumptions. For instance, a large body of work
assumes stochastic gradients that follow a specific distribu-
tion, e.g., sub-Gaussian/exponential (Chen et al, 2017; Feng
et al., 2017; Yin et al., 2018; Prasad et al., 2020). Some
approaches rely on stronger assumptions that are not even
satisfied by a Gaussian distribution, such as almost surely
absolutely boundedness (Alistarh et al., 2018; Diakonikolas
et al., 2019b; Allen-Zhu et al., 2020, or vanishing vari-
ance (Blanchard et al., 2017; Xie et al., 2018; El Mhamdi
etal., 2018; 20214). Indeed, these assumptions are often vio-
lated in practice, resulting in the failure of these approaches
‘when some workers behave maliciously (Baruch et al., 2019;
Xie et al., 2019a). Ultimately, the considerable difference in
these assumptions from one approach to another makes it
quite difficult to compare the underlying techniques.

— Check the full paper

ICML2022, paper1455

— Drop us an email directly

{firstname}.{lastname}@epfl.ch

11



