

Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement Learning

Ling Pan¹, Longbo Huang¹, Tengyu Ma², Huazhe Xu²

¹ Institute for Interdisciplinary Information Sciences, Tsinghua University
² Stanford University

Offline Reinforcement Learning

Reinforcement learning

Offline Reinforcement learning

- Key challenge
 - Distribution shift
 - Extrapolation error

Offline Reinforcement Learning

- Existing Approaches
 - Behavior regularization: TD3+Behavior Cloning (Fujimoto et al., 2021) ...
 - Add a behavior cloning term to the policy update of TD3

$$\pi = \operatorname{argmax}_{\pi} \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\lambda Q(s, \pi(s)) - (\pi(s) - a)^{2} \right]$$

-- Largely depends on the quality of the dataset

Offline Reinforcement Learning

- Existing Approaches
 - Behavior regularization: TD3+Behavior Cloning (Fujimoto et al., 2021) ...
 - Add a behavior cloning term to the policy update of TD3

$$\pi = \operatorname{argmax}_{\pi} \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\lambda Q(s, \pi(s)) - (\pi(s) - a)^{2} \right]$$

- -- Largely depends on the quality of the dataset
- Critic regularization: Conservative Q-Learning (Kumar et al. 2020) ...
 - Based on a conservative estimation of the Q-function

minimize Q-values of (s,a) sampled from a uniform distribution/the policy

$$\mathbb{E}_{\mathcal{D}_i}[(Q_i(o_i, a_i) - y_i)^2] + \alpha \mathbb{E}_{\mathcal{D}_i}\left[\log \sum_{a_i} \exp(Q_i(o_i, a_i)) - \mathbb{E}_{a_i \sim \widehat{\pi}_{\beta_i}(a_i | o_i)}[Q_i(o_i, a_i)]\right]$$

maximize Q-values for (s,a) in the dataset to be large

-- The performance degrades dramatically with an increasing number of agents

- Multi-agent actor-critic
 - Centralized value function
 - Multi-agent DDPG (MADDPG) [Lowe et al., 2017]
 - Critic i: $Q_i(s, a_1, \dots, a_n)$ $\mathcal{L}(\theta_i) = \mathbb{E}_{\mathcal{D}}[(Q_i(s, a_1, \dots, a_n) y_i)^2], \text{ where } y_i = r_i + \gamma \bar{Q}_i(s', a_1', \dots, a_n')|_{a_j' = \bar{\pi}_j(o_j')}$
 - Actor $i: \pi_i(o_i)$ $\nabla_{\varphi_i} J(\pi_i) = \mathbb{E}_{\mathcal{D}} \left[\nabla_{\varphi_i} \pi_i(a_i | o_i) \nabla_{a_i} Q_i(s, a_1, \dots, a_n) |_{a_i = \pi_i(o_i)} \right]$

- Multi-agent actor-critic
 - Centralized value function
 - Multi-agent DDPG (MADDPG) [Lowe et al., 2017]
 - Decentralized value function
 - Independent DDPG (IDDPG) [de Witt et al., 2020]
 - Critic i: $Q_i(o_i, a_i)$
 - Actor i: $\pi_i(o_i)$

[Figure based on Jakob Foerster's talk]

From (Offline) Single-Agent RL to Multi-Agent RL

Online PPO Independent PPO or Multi-Agent PPO Offline CQL

A motivating example
 Task

The Spread environment $(n \ge 1)$

- Multi-agent setting:
 - Cooperate to cover all landmarks

- Multi-agent TD3+BC (behavior cloning)
 - Largely depends on the quality of the dataset

A motivating example

> The performance of CQL degrades dramatically with an increasing number of agents.

Key issue

- Predicted action from the MA-CQL agent
- ▲ Updated predicted action by MA-CQL
- Updated predicted action by OMAR

- The policy gets stuck in a bad local optimum.
- First-order policy gradient method is prone to local optima
- The agent can fail to globally optimize the conservative value function well
- Lead to suboptimal, uncoordinated learning behavior

Requires each of the agent to learn a good policy for a successful joint policy.

One fails to learn a good policy

Fails to cooperate with others

Leads to uncoordinated global failure

• Idea

the action provided by the zeroth-order optimizer

$$\min \mathbb{E}_{\mathcal{D}_i} \Big[(1-\tau) Q_i \Big(o_i, \pi_i(o_i) \Big) - \tau \Big(\pi_i(o_i) - \hat{a}_i \Big)^2 \Big]$$
 Escape from bad local optima

- Zeroth-order optimizer: $\hat{a}_i = \operatorname{argmax}_{a_i \sim \mathcal{N}} Q_i(o_i, a_i)$
- Behavior cloning (TD3+BC): $\hat{a}_i \sim \mathcal{D}_i$

Idea

the action provided by the zeroth-order optimizer

$$\min \mathbb{E}_{\mathcal{D}_i} \left[(1 - \tau) Q_i \left(o_i, \pi_i(o_i) \right) - \tau \left(\pi_i(o_i) - \hat{a}_i \right)^2 \right]$$

Zeroth-order optimizer (evolution strategy)

For agent *i*

Sample K candidate actions \longrightarrow **Evaluate** Q-values \longrightarrow **Update** the sampling distribution

• Idea

the action provided by the zeroth-order optimizer

$$\min \mathbb{E}_{\mathcal{D}_i} \left[(1 - \tau) Q_i \left(o_i, \pi_i(o_i) \right) - \tau \left(\pi_i(o_i) - \hat{a}_i \right)^2 \right]$$

Zeroth-order optimizer (evolution strategy)

368366364MA-CQL's update

358356354352-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Action

- Predicted action from the MA-CQL agent
- ▲ Updated predicted action by MA-CQL
- ■Updated predicted action by OMAR

- Better leverage the **global** information in the critic
- Help the actor to **escape** from the **bad local optima**
- ➤ Safe policy improvement guarantee

• Is OMAR effective with an increasing number of agents?

Performance improvement percentage of OMAR over MA-CQL with varying number of agents

• Multi-agent > Single-agent

• Is OMAR effective in online/offline, single/multi-agent settings?

OMAR OMAR 42

• Multi-agent particle environments

		MA-ICQ	MA-TD3+BC	MA-CQL	OMAR
Random	Cooperative navigation Predator-prey World	6.3 ± 3.5 2.2 ± 2.6 1.0 ± 3.2	9.8 ± 4.9 5.7 ± 3.5 2.8 ± 5.5	24.0 ± 9.8 5.0 ± 8.2 0.6 ± 2.0	34.4 ± 5.3 11.1 ± 2.8 5.9 ± 5.2
Medium -replay	Cooperative navigation Predator-prey World	13.6 ± 5.7 34.5 ± 27.8 12.0 ± 9.1	15.4 ± 5.6 28.7 ± 20.9 17.4 ± 8.1	20.0 ± 8.4 24.8 ± 17.3 29.6 ± 13.8	37.9 ± 12.3 47.1 ± 15.3 42.9 ± 19.5
Medium	Cooperative navigation Predator-prey World	29.3 ± 5.5 63.3 ± 20.0 71.9 ± 20.0	29.3 ± 4.8 65.1 ± 29.5 73.4 ± 9.3	34.1 ± 7.2 61.7 ± 23.1 58.6 ± 11.2	47.9 ± 18.9 66.7 ± 23.2 74.6 ± 11.5
Expert	Cooperative navigation Predator-prey World	104.0 ± 3.4 113.0 ± 14.4 109.5 ± 22.8	108.3 ± 3.3 115.2 ± 12.5 110.3 ± 21.3	98.2 ± 5.2 93.9 ± 14.0 71.9 ± 28.1	$egin{array}{l} {f 114.9} \pm 2.6 \ {f 116.2} \pm 19.8 \ {f 110.4} \pm 25.7 \end{array}$

cooperative navigation

Multi-agent MuJoCo

agent 1: control the front joints

agent 2: control the back joints

	Random	Medium-reply	Medium	Expert
MA-ICQ	7.4 ± 0.0	35.6 ± 2.7	73.6 ± 5.0	110.6 ± 3.3
MA-TD3+BC	7.4 ± 0.0	27.1 ± 5.5	75.5 ± 3.7	114.4 ± 3.8
MA-CQL	7.4 ± 0.0	41.2 ± 10.1	50.4 ± 10.8	64.2 ± 24.9
OMAR	15.4 ± 12.3	$ extbf{57.7} \pm 5.1$	80.7 ± 10.2	113.5 ± 4.3

• StarCraft II Micromanagement Benchmark

The average performance gain of OMAR over MA-CQL is 76.7%.

OMAR

• D4RL

	umaze	medium	large
TD3+BC	41.1 ± 4.9	75.5 ± 27.1	103.9 ± 31.4
ICQ	4.8 ± 3.8	13.0 ± 7.9	9.2 ± 20.0
CQL	109.8 ± 23.9	106.4 ± 11.0	94.6 ± 44.6
OMAR	124.7 ± 7.6	125.7 ± 12.3	157.7 ± 12.3

OMAR is compatible for single-agent control.

Thank you! Q & A