Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement Learning Ling Pan¹, Longbo Huang¹, Tengyu Ma², Huazhe Xu² ¹ Institute for Interdisciplinary Information Sciences, Tsinghua University ² Stanford University ### Offline Reinforcement Learning Reinforcement learning Offline Reinforcement learning - Key challenge - Distribution shift - Extrapolation error # Offline Reinforcement Learning - Existing Approaches - Behavior regularization: TD3+Behavior Cloning (Fujimoto et al., 2021) ... - Add a behavior cloning term to the policy update of TD3 $$\pi = \operatorname{argmax}_{\pi} \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\lambda Q(s, \pi(s)) - (\pi(s) - a)^{2} \right]$$ -- Largely depends on the quality of the dataset # Offline Reinforcement Learning - Existing Approaches - Behavior regularization: TD3+Behavior Cloning (Fujimoto et al., 2021) ... - Add a behavior cloning term to the policy update of TD3 $$\pi = \operatorname{argmax}_{\pi} \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\lambda Q(s, \pi(s)) - (\pi(s) - a)^{2} \right]$$ - -- Largely depends on the quality of the dataset - Critic regularization: Conservative Q-Learning (Kumar et al. 2020) ... - Based on a conservative estimation of the Q-function *minimize* Q-values of (s,a) sampled from a uniform distribution/the policy $$\mathbb{E}_{\mathcal{D}_i}[(Q_i(o_i, a_i) - y_i)^2] + \alpha \mathbb{E}_{\mathcal{D}_i}\left[\log \sum_{a_i} \exp(Q_i(o_i, a_i)) - \mathbb{E}_{a_i \sim \widehat{\pi}_{\beta_i}(a_i | o_i)}[Q_i(o_i, a_i)]\right]$$ maximize Q-values for (s,a) in the dataset to be large -- The performance degrades dramatically with an increasing number of agents - Multi-agent actor-critic - Centralized value function - Multi-agent DDPG (MADDPG) [Lowe et al., 2017] - Critic i: $Q_i(s, a_1, \dots, a_n)$ $\mathcal{L}(\theta_i) = \mathbb{E}_{\mathcal{D}}[(Q_i(s, a_1, \dots, a_n) y_i)^2], \text{ where } y_i = r_i + \gamma \bar{Q}_i(s', a_1', \dots, a_n')|_{a_j' = \bar{\pi}_j(o_j')}$ - Actor $i: \pi_i(o_i)$ $\nabla_{\varphi_i} J(\pi_i) = \mathbb{E}_{\mathcal{D}} \left[\nabla_{\varphi_i} \pi_i(a_i | o_i) \nabla_{a_i} Q_i(s, a_1, \dots, a_n) |_{a_i = \pi_i(o_i)} \right]$ - Multi-agent actor-critic - Centralized value function - Multi-agent DDPG (MADDPG) [Lowe et al., 2017] - Decentralized value function - Independent DDPG (IDDPG) [de Witt et al., 2020] - Critic i: $Q_i(o_i, a_i)$ - Actor i: $\pi_i(o_i)$ [Figure based on Jakob Foerster's talk] # From (Offline) Single-Agent RL to Multi-Agent RL Online PPO Independent PPO or Multi-Agent PPO Offline CQL A motivating example Task The Spread environment $(n \ge 1)$ - Multi-agent setting: - Cooperate to cover all landmarks - Multi-agent TD3+BC (behavior cloning) - Largely depends on the quality of the dataset A motivating example > The performance of CQL degrades dramatically with an increasing number of agents. #### Key issue - Predicted action from the MA-CQL agent - ▲ Updated predicted action by MA-CQL - Updated predicted action by OMAR - The policy gets stuck in a bad local optimum. - First-order policy gradient method is prone to local optima - The agent can fail to globally optimize the conservative value function well - Lead to suboptimal, uncoordinated learning behavior Requires each of the agent to learn a good policy for a successful joint policy. One fails to learn a good policy Fails to cooperate with others Leads to uncoordinated global failure • Idea the action provided by the zeroth-order optimizer $$\min \mathbb{E}_{\mathcal{D}_i} \Big[(1-\tau) Q_i \Big(o_i, \pi_i(o_i) \Big) - \tau \Big(\pi_i(o_i) - \hat{a}_i \Big)^2 \Big]$$ Escape from bad local optima - Zeroth-order optimizer: $\hat{a}_i = \operatorname{argmax}_{a_i \sim \mathcal{N}} Q_i(o_i, a_i)$ - Behavior cloning (TD3+BC): $\hat{a}_i \sim \mathcal{D}_i$ Idea the action provided by the zeroth-order optimizer $$\min \mathbb{E}_{\mathcal{D}_i} \left[(1 - \tau) Q_i \left(o_i, \pi_i(o_i) \right) - \tau \left(\pi_i(o_i) - \hat{a}_i \right)^2 \right]$$ Zeroth-order optimizer (evolution strategy) #### For agent *i* **Sample** K candidate actions \longrightarrow **Evaluate** Q-values \longrightarrow **Update** the sampling distribution • Idea the action provided by the zeroth-order optimizer $$\min \mathbb{E}_{\mathcal{D}_i} \left[(1 - \tau) Q_i \left(o_i, \pi_i(o_i) \right) - \tau \left(\pi_i(o_i) - \hat{a}_i \right)^2 \right]$$ Zeroth-order optimizer (evolution strategy) 368366364MA-CQL's update 358356354352-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 Action - Predicted action from the MA-CQL agent - ▲ Updated predicted action by MA-CQL - ■Updated predicted action by OMAR - Better leverage the **global** information in the critic - Help the actor to **escape** from the **bad local optima** - ➤ Safe policy improvement guarantee • Is OMAR effective with an increasing number of agents? Performance improvement percentage of OMAR over MA-CQL with varying number of agents • Multi-agent > Single-agent • Is OMAR effective in online/offline, single/multi-agent settings? OMAR OMAR 42 # • Multi-agent particle environments | | | MA-ICQ | MA-TD3+BC | MA-CQL | OMAR | |-------------------|--|---|---|--|--| | Random | Cooperative navigation
Predator-prey
World | 6.3 ± 3.5 2.2 ± 2.6 1.0 ± 3.2 | 9.8 ± 4.9
5.7 ± 3.5
2.8 ± 5.5 | 24.0 ± 9.8
5.0 ± 8.2
0.6 ± 2.0 | 34.4 ± 5.3 11.1 ± 2.8 5.9 ± 5.2 | | Medium
-replay | Cooperative navigation
Predator-prey
World | 13.6 ± 5.7
34.5 ± 27.8
12.0 ± 9.1 | 15.4 ± 5.6 28.7 ± 20.9 17.4 ± 8.1 | 20.0 ± 8.4 24.8 ± 17.3 29.6 ± 13.8 | 37.9 ± 12.3 47.1 ± 15.3 42.9 ± 19.5 | | Medium | Cooperative navigation Predator-prey World | 29.3 ± 5.5 63.3 ± 20.0 71.9 ± 20.0 | 29.3 ± 4.8 65.1 ± 29.5 73.4 ± 9.3 | 34.1 ± 7.2
61.7 ± 23.1
58.6 ± 11.2 | 47.9 ± 18.9 66.7 ± 23.2 74.6 ± 11.5 | | Expert | Cooperative navigation Predator-prey World | 104.0 ± 3.4
113.0 ± 14.4
109.5 ± 22.8 | 108.3 ± 3.3
115.2 ± 12.5
110.3 ± 21.3 | 98.2 ± 5.2
93.9 ± 14.0
71.9 ± 28.1 | $egin{array}{l} {f 114.9} \pm 2.6 \ {f 116.2} \pm 19.8 \ {f 110.4} \pm 25.7 \end{array}$ | cooperative navigation Multi-agent MuJoCo agent 1: control the front joints agent 2: control the back joints | | Random | Medium-reply | Medium | Expert | |-----------|-----------------|------------------------|-----------------|-----------------| | MA-ICQ | 7.4 ± 0.0 | 35.6 ± 2.7 | 73.6 ± 5.0 | 110.6 ± 3.3 | | MA-TD3+BC | 7.4 ± 0.0 | 27.1 ± 5.5 | 75.5 ± 3.7 | 114.4 ± 3.8 | | MA-CQL | 7.4 ± 0.0 | 41.2 ± 10.1 | 50.4 ± 10.8 | 64.2 ± 24.9 | | OMAR | 15.4 ± 12.3 | $ extbf{57.7} \pm 5.1$ | 80.7 ± 10.2 | 113.5 ± 4.3 | • StarCraft II Micromanagement Benchmark The average performance gain of OMAR over MA-CQL is 76.7%. **OMAR** • D4RL | | umaze | medium | large | |--------|------------------|------------------|------------------| | TD3+BC | 41.1 ± 4.9 | 75.5 ± 27.1 | 103.9 ± 31.4 | | ICQ | 4.8 ± 3.8 | 13.0 ± 7.9 | 9.2 ± 20.0 | | CQL | 109.8 ± 23.9 | 106.4 ± 11.0 | 94.6 ± 44.6 | | OMAR | 124.7 ± 7.6 | 125.7 ± 12.3 | 157.7 ± 12.3 | OMAR is compatible for single-agent control. # Thank you! Q & A