Innía-

Measuring dissimilarity with diffeomorphism invariance

Théophile Cantelobre, Carlo Ciliberto, Benjamin Guedj, Alessandro Rudi Inria & UCL ICML 2022 @ Baltimore

Poster session Today from 6-8pm Hall E #517

Come talk about machine learning.

Me

Íngia

Setting & problem statement

- Supervised learning, clustering, retrieval: distances are useful!
- Deformations in the wild: perspective, rotation, translation, ...

Find a distance between images which is invariant to smooth diffeomorphisms and computable in practice.

How ? Enforce inductive bias.

- Labeled data is expensive
- Data augmentation is computationally intensive.

Applied to our examples

Raccoon credits: Adrien Bukato

Key idea #1: Seeing images as functions

Key idea #2: change of variable

$$\int f(Q(x))|
abla Q(x)|\mathrm{d}x = \int f(x)\mathrm{d}x.$$
 $\int \int f(Q(x))|
abla Q(x)|\mathrm{d}x = \int f(x)\mathrm{d}x.$
 $\int \int f(Q(x))|
abla Q(x)|\mathrm{d}x = \int f(x)\mathrm{d}x.$

Key idea #3: Nyström approximations

Kernel methods are expressive but expensive when used naïvely!

Efficient time complexity thanks to Nyström approximations.

Summary

Find a distance between images which is invariant to smooth diffeomorphisms and computable in practice.

Intuitive dissimilarity based on kernel methods.

Guarantees on behavior of dissimilarity and its **approximation**, with **fast time complexity**.

In practice: behaves as expected on images, fast code using GPU acceleration.

Summary

Find a distance between images which is **invariant to smooth diffeomorphisms** and **computable in practice**.

Intuitive dissimilarity based on kernel methods.

Guarantees on behavior of dissimilarity and its **approximation**, with **fast time complexity**.

In practice: behaves as expected on images, fast code using GPU acceleration.

Come talk to me Hall E #517 (6-8pm)

You work on invariances in ML.

You are interested in kernel methods, Nyström approximations, ...

□ You like (bad) ML memes...

