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Introduction

Federated Learning Environment

Consider a federated learning problem with K clients,

Local loss: Lk(w);

Local weight: πk;

Non-smooth regularizer h(·).

We will consider two instances of the FL problem:

arg min
w∈W

{
K∑

k=1

πkLk(w) + h(w)

}
. (1.1)

We denote the global loss as L =
∑K

k=1 πkLk and the global composite objective as
ϕ = L+ h.

Examples: federated sparse linear regression, federated low-rank matrix estimation.
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Federated Composite Optimization

For general composite optimization in FL,

Local population distribution: Pk;

Local population loss: Lk(w) = Eξ∼Pk [f(w; ξ)];

Non-smooth convex regularizer: h(·).

With corresponding objective

ŵ = arg min
w∈W

{
K∑

k=1

πkLk(w) + h(w)

}
. (1.2)

Matches previous analyses which ignore the statistical estimation problem.
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Federated Statistical Recovery

For statistical recovery problem in FL,

Local empirical distribution: Dk;

Local empirical loss: Lk(w) = Eξ∼Dk [f(w; ξ)];

Non-smooth norm regularizer: R(·), which is decomposable [Negahban et al.,
2012];

The ground-truth parameter: w∗ = argminw∈W
∑K

k=1 πkEξ∼Pk [f(w; ξ)].

We want to obtain the ground-truth parameter w∗ through solving:

ŵopt = arg min
w∈W

{
K∑

k=1

πkLk(w) + λoptR(w)

}
, (1.3)

where λopt is the optimal regularization parameter.

Our goal is to design an algorithm to recover w∗ with the optimal statistical precision
∥ŵopt −w∗∥ ≲ ϵstat := Ψ(M̄)λopt/µ [Negahban et al., 2012].
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Fast Composite Optimization in FL

Fast-FedDA
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Fast Composite Optimization in FL

Convergence Rate of Fast-FedDA

We impose the following assumptions:

1 Lk for k ∈ [K] are µ-strongly convex and L-smooth.

2 h : W → R is a closed convex function.

3 Bounded heterogeneity: ∥∇Lk(w)− L(w)∥ ≤ H for any w ∈ W.

4 Bounded variance of stochastic gradient: Eξ∼Pk [∥∇f(w; ξ)−∇Lk(w)∥2] ≤ σ2.

Theorem

Under Assumptions 1-4, with αt = (t+ a)2 and γ = µa3 with a ≥ 4L/µ in Algorithm
Fast-FedDA,

EP [ϕ(ŵFast-FedDA)− ϕ(ŵ)] ≤ O

(
σ2

KµT

)
(2.1)

for equal-weighted case (π1 = ... = πK = 1/K).
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RSC and RSM

Widely used in statistical recovery literature [Agarwal et al., 2012, Wang et al., 2014,
Loh and Wainwright, 2015, Cai et al., 2020]. Denote

Tk(w,w′) = Lk(w)− Lk(w
′)− ⟨∇Lk(w

′),w −w′⟩.

Assumption (RSC)

The local loss functions Lk for k = 1, ...,K are convex and there exist µ > 0 and
τk ≥ 0 such that for any w,w′ ∈ W:

Tk(w,w′) ≥ µ

2
∥w −w′∥2 − τkR2(w −w′).

.

Assumption (RSM)

For the local loss functions Lk for k = 1, ...,K, there exist L > 0 and νk ≥ 0 such
that for any w, w′ ∈ W:

Tk(w,w′) ≤ L

2
∥w −w′∥2 + νkR2(w −w′).
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Multi-stage Constrained FedDA
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ŵm
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ŵopt
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Figure: Optimization landscape in R norm at the m-th stage of MC-FedDA.
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Fast Statistical Recovery in FL

Complexity of MC-FedDA

With high probability, we can guarantee bounds on optimization error and estimation
error:

Optimization: ϕ(ŵMC-FedDA)− ϕ(ŵopt) ≤
Ψ2(M̄)λ2

opt

µ
.

Estimation: ∥ŵMC-FedDA −w∗∥ ≤ 4Ψ(M̄)λopt

µ
= 4ϵstat.

When π1 = . . . = πK = 1/K:

ϵstat = Ψ(M̄)λopt/µ converges to 0 as the total sample size N → ∞.

Let ϵ = µϵ2stat, if the total number of iterations satisfies T = Õ(Ψ(M̄)2σ2/(Kµϵ)),
then we are guaranteed that ϕ(ŵMC-FedDA)− ϕ(ŵopt) ≤ ϵ.

The total communication complexity is bounded by Õ(T 1/2K1/2), matching the
best known result of FedAvg for unconstrained problem [Woodworth et al., 2020,
Stich, 2019].
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Experiment Results

We compare our proposed algorithms with Federated Mirror Descent (FedMiD) and
Federated Dual Averaging (FedDA) algorithms introduced in Yuan et al. [2021].
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Figure: Recovery results for federated sparse linear regression problem.

0 5000 10000 15000

Round

1.35

1.4

1.45

1.5

1.55

1.6

T
ra

in
 L

os
s

FedMiD
FedDA
Fast-FedDA
C-FedDA
MC-FedDA

0 5000 10000 15000

Round

1.35

1.4

1.45

1.5

1.55

1.6

T
es

t L
os

s

0 5000 10000 15000

Round

0.6

0.61

0.62

0.63

0.64

0.65

0.66

T
ra

in
 A

cc
ur

ac
y

0 5000 10000 15000

Round

0.6

0.61

0.62

0.63

0.64

0.65

0.66

T
es

t A
cc

ur
ac

y

Figure: Results for federated sparse logistic regression on EMNIST-62 dataset. 14 / 15
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