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Federated Learning Environment

Consider a federated learning problem with K clients,

m Local loss: Ly (w);
m Local weight: my;

m Non-smooth regularizer h(-).

We will consider two instances of the FL problem:

arg mln {Zﬂkﬁk + h(w )} (1.1)

We denote the global loss as £ = ZkK:1 m Ly and the global composite objective as
¢=L+h

Examples: federated sparse linear regression, federated low-rank matrix estimation.
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Federated Composite Optimization

For general composite optimization in FL,

m Local population distribution: Pj;
m Local population loss: Li(w) = Eep, [f(w;8)];

m Non-smooth convex regularizer: h(-).

With corresponding objective

K
W = arg ur)rgilv {; T Lr(w) + h(w)} .

Matches previous analyses which ignore the statistical estimation problem.

(1.2)
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Federated Statistical Recovery

For statistical recovery problem in FL,

m Local empirical distribution: Dx;
m Local empirical loss: Lp(w) = Eenp, [f(w;§)];

m Non-smooth norm regularizer: R(-), which is decomposable [Negahban et al.,
2012];

® The ground-truth parameter: w* = arg minwew >, TEep, [f(w; E)].

We want to obtain the ground-truth parameter w”* through solving:

K
Wopt = arg 1{)1211/1\; {; Lk (w) + )\optR('w)} , (1.3)

where Aopt is the optimal regularization parameter.

Our goal is to design an algorithm to recover w* with the optimal statistical precision

|[Wopt — W|| < €stat := W(M)Aopt/ 11 [Negahban et al., 2012].
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2. Fast Composite Optimization in FL
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Convergence Rate of Fast-FedDA

We impose the following assumptions:

Ly, for k € [K] are p-strongly convex and L-smooth.

=

h: W — R is a closed convex function.
Bounded heterogeneity: [|[VL(w) — L(w)|| < H for any w € W.
@ Bounded variance of stochastic gradient: E¢op, [||V f(w;€) — VL (w)|?] < 0.

[

Theorem

Under Assumptions 1-4, with a; = (t + a)? and v = pa® with a > 4L/ in Algorithm
Fast-FedDA, )

Ep [p(Wrast-Fedpa) — P(W)] < O (KU,LLT> (2.1)

for equal-weighted case (m1 = ... = g = 1/K).
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3. Fast Statistical Recovery in FL
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RSC and RSM

Widely used in statistical recovery literature [Agarwal et al., 2012, Wang et al., 2014,
Loh and Wainwright, 2015, Cai et al., 2020]. Denote

Te(w,w') = Li(w) — Li(w') — (VL (w'),w — w').

Assumption (RSC)

The local loss functions Ly, for k =1, ..., K are convex and there exist u > 0 and
Tr > 0 such that for any w,w’ € W:

Ti(w,w') 2 Lfjw — o' - 7R? (w — ).

Assumption (RSM)

For the local loss functions Ly for k =1, ..., K, there exist L > 0 and vy, > 0 such
that for any w, w' € W:

o

Te(w,w)) < 5

|[w—w'||> + v R (w — w').
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Multi-stage Constrained FedDA

Figure: Optimization landscape in R norm at the m-th stage of MC-FedDA.
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Complexity of MC-FedDA

With high probability, we can guarantee bounds on optimization error and estimation
error:

L Y —~ W2 (M)A2
m Optimization: ¢(Wmc-redpa) — P(Wopt) < %

AW (M) Aopt
©w

m Estimation: ||@MC—FedDA — 'w*|| < = 4egtat.

When m = ... =g = 1/K:

B egtat = V(M) Aopt/ 10 converges to 0 as the total sample size N — oco.

m Let € = pe,, if the total number of iterations satisfies T = O(¥(M)20? /(K pe)),
then we are guaranteed that ¢(Wmc-redpa) — ¢(Wopt) < €.

m The total communication complexity is bounded by @(TI/QKI/Q), matching the
best known result of FedAvg for unconstrained problem [Woodworth et al., 2020,
Stich, 2019].
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4. Experiment Results
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Experiment Results

We compare our proposed algorithms with Federated Mirror Descent (FedMiD) and
Federated Dual Averaging (FedDA) algorithms introduced in Yuan et al. [2021].
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Figure: Recovery results for federated sparse linear regression problem.

FedWiD
——FedDA es 065 065
Fast-FedDA
C-FedDA Foss Z o6
a 2 15 & g
g |——MC-FedDA 8 g g
2 3 8 063 3 06
g B b <
= $ o2 % o2
£ &
4 061 o061
135 06 08
0 S0 10000 15000 0 S0 10000 15000 S0 10000 15000 3 S0 10000 15000

Round

Round

Round

Round

Figure: Results for federated sparse logistic regression on EMNIST-62 dataset.
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