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Introduction

Multi agent reinforcement learning with sparse rewards

• Joint action space grows exponentially with the number of agents.

• Typically, agents receive a global reward.

• Reward comes only under certain circumstances, e.g., success/failure.

• We approach multi-agent sparse RL with sub-goals and 
• propose a method to determine sub-goals by exploiting experience replay buffer.
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N agents

4 actions

• Total joint action space : 4!
• 4! contributes only 1 sparse & global reward
• Which agent and actions contributes more?



Contributions

Our method has three contributions : 

• Generating and assigning subgoals: MASER finds subgoals for agents from 
the experience replay buffer. This eliminates the necessity of predesigning 
good subgoals based on domain knowledge.

• Giving individual rewards: MASER designs individual rewards for local 
agents to reach their subgoals while maximizing the joint return.

• Actionable distance relevant to Q-learning : To determine the intrinsic 
reward based on the Euclidean distance in the transformed domain, 
MASER uses representational transform based on actionable distance 
relevant to Q-learning derived from Amari 0-divergence.

SISREL4



Proposed Algorithm : Generating Subgoals

SISREL5

Figure1. Generating Subgoals
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Proposed Algorithm : Overall Reward Design
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Figure2. Overall reward design diagram
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Proposed Algorithm : Q-Function-Based Representation Learning
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By minimizing loss function, 𝜙" is learned to represent 
actionable distance



Proposed Algorithm : Overall Flow
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Figure3. Overflow

• Reach subgoals by giving 
intrinsic reward

• Novel distance function 
with cosine similarity

• Episodic correction after 
reaching subgoals.



Results (Experiments on StarCraft 2 with Sparse Rewards)
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Figure4(a). 3m Figure4(b). 2m_vs_1z

Figure4(c). 8m Figure4(d). 2s3z



Example of Generated Subgoals

SISREL10

Figure5. Visualization of suboglas on 2s3z
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