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Introduction

Multi agent reinforcement learning with sparse rewards

* Joint action space grows exponentially with the number of agents.
* Typically, agents receive a global reward.
* Reward comes only under certain circumstances, e.g., success/failure.

* We approach multi-agent sparse RL with sub-goals and
. propose a method to determine sub-goals by exploiting experience replay buffer.
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Contributions

Our method has three contributions :

* Generating and assigning subgoals: MASER finds subgoals for agents from
the experience replay buffer. This eliminates the necessity of predesigning
good subgoals based on domain knowledge.

* Giving individual rewards: MASER designs individual rewards for local
agents to reach their subgoals while maximizing the joint return.

* Actionable distance relevant to Q-learning : To determine the intrinsic
reward based on the Euclidean distance in the transformed domain,
MASER uses representational transform based on actionable distance
relevant to Q-learning derived from Amari O-divergence.
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Proposed Algorithm : Generating Subgoals
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Proposed Algorithm : Overall Reward Design
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Proposed Algorithm : Q-Function-Based Representation Learning
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Proposed Algorithm : Overall Flow
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Results (Experiments on StarCraft 2 with Sparse Rewards)
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Example of Generated Subgoals
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Thank you!
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