ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning Jun Xia^{1,2}, Lirong Wu^{1,2}, Ge Wang^{1,2}, Jintao Chen^{1,2} and Stan Z. Li^{1,2} ¹Westlake University, ²Westlake Institute for Advanced Study # Outline - Preamble - Analysis - ProGCL - Experiments - Concluding Remarks # Preamble Contrastive Learning (CL) & Graph Contrastive Learning (GCL) Ref 1. SimCLR, ICML'20 Ref 2. GCA, WWW'21 # **Analysis** ### Hard Negative Mining Methods Fail in Graph Contrastive Learning | Methods/Datasets | Amazon-Photo | Amazon-Computers | Coauthor-CS | |------------------|-----------------------|-----------------------|-----------------------| | GCA | 92.55 | 87.82 | 92.40 | | +DCL | 91.02 (\ 1.53) | 86.58 (\ 1.24) | 92.36 (\ 0.04) | | +HCL | 91.48 (\ 1.07) | 87.21 (\ 0.61) | 93.06 († 0.66) | | +MoCHi | 92.36 (\ 0.19) | 87.68 († 0.14) | 92.58 († 0.18) | | +Ring | 91.33 (\ 1.22) | 84.18 (\ 3.64) | 92.48 (\ 0.08) | | +ProGCL-mix | 93.64 († 1.09) | 89.55 († 1.73) | 93.67 († 1.27) | | | | | | Ref 3. NeurIPS' 21 (Benchmarks Track) Table 1. Our Results # **Analysis** Why above phenomena would occur? Fig 2. Similarity histograms of negatives. Unlike CL, most negatives with larger similarities to the anchor are false ones in GCL. # **Analysis** ### Experimental & Theoretical Analysis Fig 3. Semantic Diagram of Messaging-Passing. Fig 4. GCN (with MP) vs. MLP (w/o MP). Delving into the Role of Message-Passing in GCL #### How to eliminate the bias? #### a. Fit the negatives' distribution with Beta Mixture Model (BMM) Fig 5. Empirical distribution v.s. estimated distribution. Beta distribution $$p(s \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} s^{\alpha - 1} (1 - s)^{\beta - 1}$$ Fig 6. Beta distribution v.s. Normal distribution. Normal distribution $$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{- rac{1}{2}\left(rac{x-\mu}{\sigma} ight)^2}$$ #### Expectation-Maximization for Beta Mixture Distribution a. E-Step $$p(s) = \sum_{c=1}^{C} \lambda_{c} p(s \mid \alpha_{c}, \beta_{c}), \quad p(c \mid s) = \frac{\lambda_{c} p(s \mid \alpha_{c}, \beta_{c})}{\sum_{j=1}^{C} \lambda_{j} p(s \mid \alpha_{j}, \beta_{j})} \ \bar{s}_{c} = \frac{\sum_{i=1}^{M} p(c \mid s_{i}) s_{i}}{\sum_{i=1}^{M} p(c \mid s_{i})}, \quad v_{c}^{2} = \frac{\sum_{i=1}^{M} p(c \mid s_{i}) (s_{i} - \bar{s}_{c})^{2}}{\sum_{i=1}^{M} p(c \mid s_{i})}$$ b. M-Step $$\alpha_c = \bar{s}_c \left(\frac{\bar{s}_c \left(1 - \bar{s}_c \right)}{v_c^2} - 1 \right), \quad \beta_c = \frac{\alpha_c \left(1 - \bar{s}_c \right)}{\bar{s}_c} \qquad \lambda_c = \frac{1}{M} \sum_{i=1}^M p(c \mid s_i) \qquad p\left(c \mid s\right) = \frac{p(c)p\left(s \mid \alpha_c, \beta_c\right)}{p\left(s\right)}$$ #### Scheme 1: ProGCL-weight New Measure: $$w(i,k) = \frac{p\left(c_t \mid s_{ik}\right) s_{ik}}{\frac{1}{N-1} \sum_{j \neq i} [p\left(c_t \mid s_{ij}\right) s_{ij}]}$$ $$\log \frac{e^{\frac{\theta(u_i,v_i)}{\tau}}}{\underbrace{e^{\frac{\theta(u_i,v_i)}{\tau}}}_{\text{positive pair}} + \underbrace{\sum_{k \neq i} w(i,k) e^{\frac{\theta(u_i,v_k)}{\tau}}}_{\text{inter-view negative pairs}} + \underbrace{\sum_{k \neq i} w(i,k) e^{\frac{\theta(u_i,u_k)}{\tau}}}_{\text{intra-view negative pairs}}$$ $$\mathcal{J}_{w} = - rac{1}{2N}\sum_{i=1}^{N}\left[\ell_{w}\left(oldsymbol{u}_{i},oldsymbol{v}_{i} ight) + \ell_{w}\left(oldsymbol{v}_{i},oldsymbol{u}_{i} ight) ight]$$ #### Scheme 2: ProGCL-mix Fig 7. MoChi (NeurIPS' 21) v.s. ProGCL-mix. $$\begin{split} \tilde{\boldsymbol{u}}_k &= \alpha_k \boldsymbol{v}_p + (1 - \alpha_k) \, \boldsymbol{v}_q, \\ \alpha_k &= \frac{p \, (c_t \mid s_{ip})}{p \, (c_t \mid s_{ip}) + p \, (c_t \mid s_{iq})} \\ \ell_m \, (\boldsymbol{u}_i, \boldsymbol{v}_i) &= \\ \log \frac{e^{\frac{\theta(\boldsymbol{u}_i, \boldsymbol{v}_i)}{\tau}}}{e^{\frac{\theta(\boldsymbol{u}_i, \boldsymbol{v}_i)}{\tau}} + \sum_{k \neq i} e^{\frac{\theta(\boldsymbol{u}_i, \boldsymbol{v}_k)}{\tau}} + \sum_{k \neq i} e^{\frac{\theta(\boldsymbol{u}_i, \boldsymbol{u}_k)}{\tau}} + \sum_{k = 1}^m e^{\frac{\theta(\boldsymbol{u}_i, \boldsymbol{u}_k)}{\tau}} \\ \inf_{\text{inter-view negative pairs}} + \sum_{i \neq i} e^{\frac{\theta(\boldsymbol{u}_i, \boldsymbol{v}_i)}{\tau}} + \sum_{k \neq i} e^{\frac{\theta(\boldsymbol{u}_i, \boldsymbol{u}_k)}{\tau}} \boldsymbol{u}_i, \boldsymbol{u}_i)}{\tau}} + \sum_{k \neq i} e^{\frac{\theta(\boldsymbol{u}_i, \boldsymbol{u}_i, \boldsymbol{u}_i, \boldsymbol{u}_i, \boldsymbol{u}_i)}{\tau} + \sum_{k \neq i} e^{\frac{\theta(\boldsymbol{u}_i, \boldsymbol{u}_i, \boldsymbol{u}_i, \boldsymbol{u}_i, \boldsymbol{u}_i, \boldsymbol{$$ $\mathcal{J}_{m} = -\frac{1}{2N} \sum_{i=1}^{N} \left[\ell_{m} \left(\boldsymbol{u}_{i}, \boldsymbol{v}_{i} \right) + \ell_{m} \left(\boldsymbol{v}_{i}, \boldsymbol{u}_{i} \right) \right]$ ### Results in Transductive Setting | Method | Available Data | Amazon-Photo | Amazon-Computers | Coauthor-CS | Wiki-CS | |----------------------|--|------------------|------------------|------------------------------------|------------------------------------| | Raw features | \boldsymbol{X} | 78.53 ± 0.00 | 73.81 ± 0.00 | 90.37 ± 0.00 | 71.98 ± 0.00 | | node2vec | $oldsymbol{A}$ | 89.67 ± 0.12 | 84.39 ± 0.08 | 85.08 ± 0.03 | 71.79 ± 0.05 | | DeepWalk | $oldsymbol{A}$ | 89.44 ± 0.11 | 85.68 ± 0.06 | 84.61 ± 0.22 | 74.35 ± 0.06 | | DeepWalk + features | $oldsymbol{X},oldsymbol{A}$ | 90.05 ± 0.08 | 86.28 ± 0.07 | 87.70 ± 0.04 | 77.21 ± 0.03 | | GAE | $oldsymbol{X},oldsymbol{A}$ | 91.62 ± 0.13 | 85.27 ± 0.19 | 90.01 ± 0.17 | 70.15 ± 0.01 | | VGAE | $oldsymbol{X},oldsymbol{A}$ | 92.20 ± 0.11 | 86.37 ± 0.21 | 92.11 ± 0.09 | 75.35 ± 0.14 | | DGI | $oldsymbol{X},oldsymbol{A}$ | 91.61 ± 0.22 | 83.95 ± 0.47 | 92.15 ± 0.63 | 75.35 ± 0.14 | | GMI | $oldsymbol{X},oldsymbol{A}$ | 90.68 ± 0.17 | 82.21 ± 0.31 | OOM | 74.85 ± 0.08 | | $MVGRL^*$ | $oldsymbol{X},oldsymbol{A}$ | 92.08 ± 0.01 | 87.45 ± 0.21 | 92.18 ± 0.15 | 77.43 ± 0.17 | | $BGRL^*$ | $oldsymbol{X},oldsymbol{A}$ | 92.95 ± 0.07 | 87.89 ± 0.10 | 92.72 ± 0.03 | 78.41 ± 0.09 | | $MERIT^*$ | $oldsymbol{X},oldsymbol{A}$ | 92.53 ± 0.15 | 88.01 ± 0.12 | 92.51 ± 0.14 | 78.35 ± 0.05 | | GCA^* | $oldsymbol{X},oldsymbol{A}$ | 92.55 ± 0.03 | 87.82 ± 0.11 | 92.40 ± 0.07 | 78.26 ± 0.06 | | ProGCL-weight | $oldsymbol{X},oldsymbol{A}$ | 93.30 ± 0.09 | 89.28 ± 0.15 | 93.51 ± 0.06 | $\textbf{78.68} \pm \textbf{0.12}$ | | ProGCL-mix | $oldsymbol{X},oldsymbol{A}$ | 93.64 ± 0.13 | 89.55 ± 0.16 | $\textbf{93.67} \pm \textbf{0.12}$ | 78.45 ± 0.04 | | Supervised GCN | X, A, Y | 92.42 ± 0.22 | 86.51 ± 0.54 | 93.03 ± 0.31 | 77.19 ± 0.12 | | Supervised GAT | $oldsymbol{X}, oldsymbol{A}, oldsymbol{Y}$ | 92.56 ± 0.35 | 86.93 ± 0.29 | 92.31 ± 0.24 | 77.65 ± 0.11 | ### Results in Inductive Setting | Method | Available Data | Flickr | Reddit | |-------------------------|--|----------------------------|----------------| | Raw features | X | 20.3 | 58.5 | | DeepWalk | $oldsymbol{A}$ | 27.9 | 32.4 | | GraphSAGE | $oldsymbol{X},oldsymbol{A}$ | 36.5 | 90.8 | | DGI | $oldsymbol{X},oldsymbol{A}$ | 42.9 ± 0.1 | 94.0 ± 0.1 | | GMI | $oldsymbol{X},oldsymbol{A}$ | 44.5 ± 0.2 | 94.8 ± 0.0 | | COLES-S ² GC | $oldsymbol{X},oldsymbol{A}$ | $46.8 {\pm} 0.5$ | 95.2 ± 0.3 | | GRACE | $oldsymbol{X},oldsymbol{A}$ | 48.0 ± 0.1 | 94.2 ± 0.0 | | ProGCL-weight | $oldsymbol{X},oldsymbol{A}$ | 49.2 ± 0.6 | 95.1±0.2 | | ProGCL-mix | $oldsymbol{X},oldsymbol{A}$ | 50.0±0.3 | 95.6±0.1 | | Supervised FastGCN | $oldsymbol{X}, oldsymbol{A}, oldsymbol{Y}$ | 48.1±0.5 | 89.5±1.2 | | Supervised GraphSAGE | $oldsymbol{X}, oldsymbol{A}, oldsymbol{Y}$ | $\underline{50.1{\pm}1.3}$ | 92.1 ± 1.1 | | | Validation | Test | |--------------------------|------------------------------------|---------------------------------------| | MLP | 57.65 ± 0.12 | 55.50 ± 0.23 | | node2vec | 71.29 ± 0.13 | 70.07 ± 0.13 | | Random-Init | 69.90 ± 0.11 | 68.94 ± 0.15 | | DGI | 71.26 ± 0.11 | 70.34 ± 0.16 | | GRACE-Subsampling | 72.61 ± 0.15 | 71.51 ± 0.11 | | BGRL | 72.53 ± 0.09 | 71.64 ± 0.12 | | COLES-S ² GC | _ | 72.48 ± 0.25 | | ProGCL-weight | 72.45 ± 0.21 | 72.18 ± 0.09 | | ProGCL-mix | $\textbf{72.82} \pm \textbf{0.08}$ | $\textbf{72.56} \pm \textbf{0.20}$ | | Supervised GCN | 73.00 ± 0.17 | 71.74 ± 0.29 | | | | · · · · · · · · · · · · · · · · · · · | ### **Concluding Remarks** • Pretrained Graph Models for Molecular Representations: Retrospect and Prospect - Useful Resources - a. The first comprehensive survey of pre-training on molecular graphs. - √ https://bit.ly/PGMs_survey - ✓ Journal version is under review. - b. A curated list of must-read papers, open-source pre-trained models and pre-training datasets. - √ https://bit.ly/PGM_resources # Thank you!