

Deep Reference Priors:

What is the best way to pretrain a model?

---

Yansong Gao\*, Rahul Ramesh\* and Pratik Chaudhari

University of Pennsylvania, \*equal contribution

## Best way to pre-train models?

Exploiting the extra data is a powerful way to reduce the number of training samples required to learn a given task.

## Best way to pre-train models?

Exploiting the extra data is a powerful way to reduce the number of training samples required to learn a given task.

We think of two types of the extra data:

- **unlabelled** data from the same task, e.g., semi-supervised learning;

## Best way to pre-train models?

Exploiting the extra data is a powerful way to reduce the number of training samples required to learn a given task.

We think of two types of the extra data:

- unlabelled data from the same task, e.g., semi-supervised learning;
- labeled data from other related tasks, e.g., transfer, multi-task, and meta-learning.

## Best way to pre-train models?

Exploiting the extra data is a powerful way to reduce the number of training samples required to learn a given task.

We think of two types of the extra data:

- unlabelled data from the same task, e.g., semi-supervised learning;
- labeled data from other related tasks, e.g., transfer, multi-task, and meta-learning.

*If we have a pool of data—be it labeled or unlabeled, from the same task, or from another related task—what is the optimal way to pre-train a model?*

## Best way to pre-train models?

Exploiting the extra data is a powerful way to reduce the number of training samples required to learn a given task.

We think of two types of the extra data:

- unlabelled data from the same task, e.g., semi-supervised learning;
- labeled data from other related tasks, e.g., transfer, multi-task, and meta-learning.

*If we have a pool of data—be it labeled or unlabeled, from the same task, or from another related task—what is the optimal way to pre-train a model?*

We formalize this question using the theory of reference priors [1].

## Notations

---

- $w \in \mathbb{R}^p$ : the weights of a probabilistic model.

## Notations

---

- $w \in \mathbb{R}^p$ : the weights of a probabilistic model.
- A prior on weights:  $w \sim \pi(w)$ .

## Notations

---

- $w \in \mathbb{R}^p$ : the weights of a probabilistic model.
- A prior on weights:  $w \sim \pi(w)$ .
- Consider a dataset  $z^n = (x^n, y^n)$ ;  
 $x^n = (x_1, \dots, x_n)$  denotes all inputs (e.g., images);  
 $y^n = (y_1, \dots, y_n)$  denotes labels.

## Notations

---

- $w \in \mathbb{R}^p$ : the weights of a probabilistic model.
- A prior on weights:  $w \sim \pi(w)$ .
- Consider a dataset  $z^n = (x^n, y^n)$ ;  
 $x^n = (x_1, \dots, x_n)$  denotes all inputs (e.g., images);  
 $y^n = (y_1, \dots, y_n)$  denotes labels.
- Bayes rule

$$p(w | z^n) \propto p(z^n | w) \pi(w)$$

## Notations

- $w \in \mathbb{R}^p$ : the weights of a probabilistic model.
- A prior on weights:  $w \sim \pi(w)$ .
- Consider a dataset  $z^n = (x^n, y^n)$ ;  
 $x^n = (x_1, \dots, x_n)$  denotes all inputs (e.g., images);  
 $y^n = (y_1, \dots, y_n)$  denotes labels.
- Bayes rule

$$p(w | z^n) \propto p(z^n | w) \pi(w)$$

To make the choice of priors less subjective Bernado [1] suggested that uninformative priors should maximize some divergence between posterior  $p(w | z^n)$  and prior  $\pi(w)$ .

## Reference Priors: Uninformative Bayesian priors

KL divergence measures the difference between  $p(w|z^n)$  and  $\pi(w)$  as

$$\text{KL}(p(w|z^n) \parallel \pi(w)) = \int dw p(w|z^n) \log \frac{p(w|z^n)}{\pi(w)}.$$

## Reference Priors: Uninformative Bayesian priors

KL divergence measures the difference between  $p(w|z^n)$  and  $\pi(w)$  as

$$\text{KL}(p(w|z^n) || \pi(w)) = \int dw p(w|z^n) \log \frac{p(w|z^n)}{\pi(w)}.$$

Since we do not know the data *a priori* while picking the prior, we should maximize the **average KL divergence over the data distribution  $p(z^n)$** .

$$\begin{aligned}\pi_n^* &= \arg \max_{\pi} \int dz^n p(z^n) \cdot \text{KL}(p(w|z^n) || \pi(w)) \\ &= \arg \max_{\pi} I_{\pi}(w; z^n)\end{aligned}\tag{1}$$

## Reference Priors: Uninformative Bayesian priors

KL divergence measures the difference between  $p(w|z^n)$  and  $\pi(w)$  as

$$\text{KL}(p(w|z^n) || \pi(w)) = \int dw p(w|z^n) \log \frac{p(w|z^n)}{\pi(w)}.$$

Since we do not know the data *a priori* while picking the prior, we should maximize the **average KL divergence over the data distribution  $p(z^n)$** .

$$\begin{aligned}\pi_n^* &= \arg \max_{\pi} \int dz^n p(z^n) \cdot \text{KL}(p(w|z^n) || \pi(w)) \\ &= \arg \max_{\pi} I_{\pi}(w; z^n)\end{aligned}\tag{1}$$

$\pi_n^*$  is the  **$n$ -reference prior** proposed by Bernardo in 1979.

$\pi_n^*$  gives the unseen ground truth labels the maximum capacity to dominate the posterior [1].

## Reference Priors

---

$\pi_n^*$  gives the unseen ground truth labels the maximum capacity to dominate the posterior [1].

Reference priors are supported on discrete sets [3].

## Reference Priors

$\pi_n^*$  gives the unseen ground truth labels the maximum capacity to dominate the posterior [1].

Reference priors are supported on discrete sets [3].

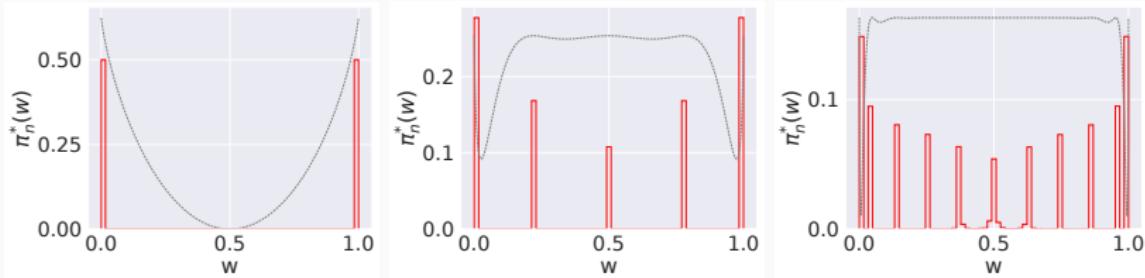
Most importantly, reference priors select diverse parts of the hypothesis space [2].

## Reference priors select diverse parts of the hypothesis space

Consider the estimation of the bias of a coin  $w \in [0, 1]$  using  $n$  trials.  $z^n$  denotes the number of heads we observe. The atoms of  $\pi_n^*$  have diverse inference on the  $n$  samples.

# Reference priors select diverse parts of the hypothesis space

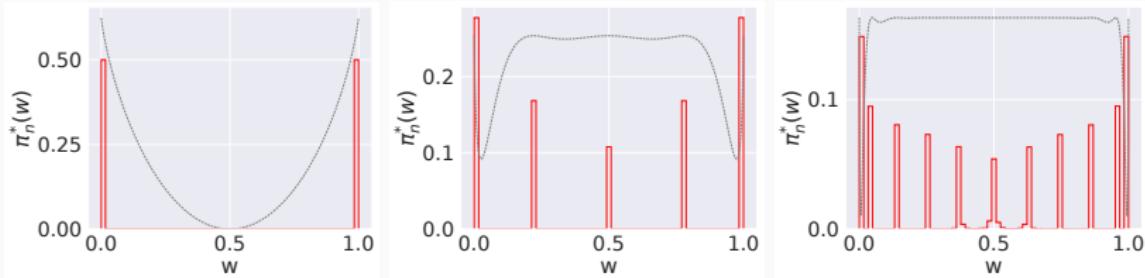
Consider the estimation of the bias of a coin  $w \in [0, 1]$  using  $n$  trials.  $z^n$  denotes the number of heads we observe. The atoms of  $\pi_n^*$  have diverse inference on the  $n$  samples.



**Figure 1:**  $\pi_n^*$  for the coin-tossing model for  $n = 1, 10, 50$  (from left to right).  $\pi_n^*$  is discrete for  $n < \infty$ . Atoms of the prior are **maximally different** from each other, e.g., for  $n = 1$ , they are on opposite corners of the parameter space.

# Reference priors select diverse parts of the hypothesis space

Consider the estimation of the bias of a coin  $w \in [0, 1]$  using  $n$  trials.  $z^n$  denotes the number of heads we observe. The atoms of  $\pi_n^*$  have diverse inference on the  $n$  samples.



**Figure 1:**  $\pi_n^*$  for the coin-tossing model for  $n = 1, 10, 50$  (from left to right).  $\pi_n^*$  is discrete for  $n < \infty$ . Atoms of the prior are **maximally different** from each other, e.g., for  $n = 1$ , they are on opposite corners of the parameter space.

This ability of the prior to **select a small set of representative models** is extremely useful for training deep networks with few data and **it was our primary motivation**.

## Application: pre-training models with unlabeled data

---

Given a few labeled data and a pool of unlabeled data, we combine reference prior and the likelihood function into a single objective

## Application: pre-training models with unlabeled data

Given a few labeled data and a pool of unlabeled data, we combine reference prior and the likelihood function into a single objective

$$\max_{\pi} \gamma l_{\pi}(w; y^u, x^u) + \mathbb{E}_{w \sim \pi} [\log p(y^n | x^n, w)], \quad (2)$$

where  $\gamma$  is a hyper parameter,  $x^n, y^n$  are labeled samples,  $x^u$  is an unlabeled sample.

# Experiments on semi-supervised learning

Accuracy (%) of semi-supervised learning methods on CIFAR-10

| Method               | #Samples   |       |       |       |       |
|----------------------|------------|-------|-------|-------|-------|
|                      | 50         | 100   | 250   | 500   | 1000  |
| PiModel              | -          | -     | 46.58 | 58.18 | 68.47 |
| PseudoLab            | -          | -     | 50.02 | 59.45 | 69.09 |
| Mixup                | -          | -     | 52.57 | 63.86 | 74.28 |
| VAT                  | -          | -     | 63.97 | 73.89 | 81.32 |
| Mean Teacher         | -          | -     | 52.68 | 57.99 | 82.68 |
| MixMatch             | 64.21      | 80.29 | 88.91 | 90.35 | 92.25 |
| FixMatch             | 86.19      | 90.1  | 94.9  | 94.0  | 94.3  |
| SelfMatch            | 93.19 (40) | -     | 95.13 | -     | -     |
| FlexMatch            | 95.0       | -     | 95.2  | -     | -     |
| Deep Reference Prior | 85.5       | 88.5  | 92.1  | 93.1  | 93.5  |

## Discussion

---

Reference priors have a unique ability to **select diverse parts of the model space.**

## Discussion

---

Reference priors have a unique ability to **select diverse parts of the model space**.

Reference priors provide an **information-theoretically optimal way** to pre-train models using unlabeled data.

## Discussion

---

Reference priors have a unique ability to **select diverse parts of the model space**.

Reference priors provide an **information-theoretically optimal way** to pre-train models using unlabeled data.

This is the **first implementation of reference priors for deep networks** that maintains their characteristic feature, namely that they are supported on a discrete set.

## Discussion

Reference priors have a unique ability to **select diverse parts of the model space**.

Reference priors provide an **information-theoretically optimal way** to pre-train models using unlabeled data.

This is the **first implementation of reference priors for deep networks** that maintains their characteristic feature, namely that they are supported on a discrete set.

A **two-stage reference prior** can be used for transfer learning.

Github: [github.com/grasp-lyrl/deep\\_reference\\_priors](https://github.com/grasp-lyrl/deep_reference_priors)

Arxiv: [arxiv.org/abs/2202.00187](https://arxiv.org/abs/2202.00187)



Visit our poster (#711) at Hall E - Wednesday 6:30pm to 8:30pm

## References

---

- [1] Jose M Bernardo. Reference posterior distributions for Bayesian inference. *Journal of the Royal Statistical Society: Series B (Methodological)*, 41(2):113–128, 1979.
- [2] Henry H Mattingly, Mark K Transtrum, Michael C Abbott, and Benjamin B Machta. Maximizing the information learned from finite data selects a simple model. *Proceedings of the National Academy of Sciences*, 115(8):1760–1765, 2018.
- [3] Zhongxin Zhang. *Discrete noninformative priors*. PhD thesis, Yale University, 1994.