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We formalize this question using the theory of reference priors [1].
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- w € RP: the weights of a probabilistic model.

- A prior on weights: w ~ m(w).

- Consider a dataset 2" = (x", y");
X" = (x4,...,xn) denotes all inputs (e.g.,, images);
y" = (V1,...,Yn) denotes labels.

- Bayes rule
p(w|z") o p(2" | w)m(w)

To make the choice of priors less subjective Bernado [1] suggested
that uninformative priors should maximize some divergence
between posterior p(w|z") and prior m(w).
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m% is the n-reference prior proposed by Bernardo in 1979.
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Most importantly, reference priors select diverse parts of the
hypothesis space [2].
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Figure 1: 7 for the coin-tossing model for n = 1,10, 50 (from left to right). =;;
is discrete for n < co. Atoms of the prior are maximally different from each
other, e.g, for n =1, they are on opposite corners of the parameter space.

This ability of the prior to select a small set of representative models

is extremely useful for training deep networks with few data and it
was our primary motivation.
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Application: pre-training models with unlabeled data

Given a few labeled data and a pool of unlabeled data, we combine
reference prior and the likelihood function into a single objective

max ylx (W; y*,X") + Eunr log p(y" | X", w)], (2)

where « is a hyper parameter, X", y" are labeled samples, x“ is an
unlabeled sample.



Experiments on semi-supervised learning

Accuracy (%) of semi-supervised learning methods on CIFAR-10

Method #Samples

50 100 250 500 1000
PiModel = - 4658 58.18 68.47
Pseudolab = - 50.02 5945 69.09
Mixup = - 5257 6386 74.28
VAT = - 6397 7389 8132
Mean Teacher = - 52,68 5799 8268
MixMatch 6421 80.29 8891 9035 9225
FixMatch 86.19 90.1 949 940 943
SelfMatch 93.19 (40) - 9513 = =
FlexMatch 95.0 = 95.2 = =

Deep Reference Prior ‘ 85.5 88.5 921 931 935
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Reference priors have a unique ability to select diverse parts of the
model space.

Reference priors provide an information-theoretically optimal way to
pre-train models using unlabeled data.

This is the first implementation of reference priors for deep networks
that maintains their characteristic feature, namely that they are
supported on a discrete set.

A two-stage reference prior can be used for transfer learning.

Github: github.com/grasp-lyrl/deep_reference_priors
Arxiv: arxiv.org/abs/2202.00187
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