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Best way to pre-train models?

Exploiting the extra data is a powerful way to reduce the number of
training samples required to learn a given task.

We think of two types of the extra data:

• unlabelled data from the same task, e.g., semi-supervised
learning;

• labeled data from other related tasks, e.g., transfer, multi-task,
and meta-learning.
If we have a pool of data—be it labeled or unlabeled, from the
same task, or from another related task—what is the optimal
way to pre-train a model?

We formalize this question using the theory of reference priors [1].
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Notations

• w ∈ Rp: the weights of a probabilistic model.

• A prior on weights: w ∼ π(w).
• Consider a dataset zn = (xn, yn);
xn = (x1, . . . , xn) denotes all inputs (e.g., images);
yn = (y1, . . . , yn) denotes labels.

• Bayes rule
p(w | zn) ∝ p(zn |w)π(w)

To make the choice of priors less subjective Bernado [1] suggested
that uninformative priors should maximize some divergence
between posterior p(w | zn) and prior π(w).
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Reference Priors: Uninformative Bayesian priors

KL divergence measures the difference between p(w | zn) and π(w) as

KL(p(w | zn) || π(w)) =
∫
dw p(w | zn) log p(w | zn)

π(w) .

Since we do not know the data a priori while picking the prior, we
should maximize the average KL divergence over the data
distribution p(zn).

π∗
n = argmax

π

∫
dzn p(zn) · KL(p(w | zn) || π(w))

= argmax
π
Iπ(w; zn) (1)

π∗
n is the n-reference prior proposed by Bernardo in 1979.
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Reference Priors

π∗
n gives the unseen ground truth labels the maximum capacity to
dominate the posterior [1].

Reference priors are supported on discrete sets [3].

Most importantly, reference priors select diverse parts of the
hypothesis space [2].
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Reference priors select diverse parts of the hypothesis space

Consider the estimation of the bias of a coin w ∈ [0, 1] using n trials.
zn denotes the number of heads we observe. The atoms of π∗

n have
diverse inference on the n samples.
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Figure 1: π∗
n for the coin-tossing model for n = 1, 10, 50 (from left to right). π∗

n

is discrete for n < ∞. Atoms of the prior are maximally different from each
other, e.g., for n = 1, they are on opposite corners of the parameter space.

This ability of the prior to select a small set of representative models
is extremely useful for training deep networks with few data and it
was our primary motivation.
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Application: pre-training models with unlabeled data

Given a few labeled data and a pool of unlabeled data, we combine
reference prior and the likelihood function into a single objective

max
π

γIπ(w; yu, xu) + Ew∼π [log p(yn | xn,w)] , (2)

where γ is a hyper parameter, xn, yn are labeled samples, xu is an
unlabeled sample.

6



Application: pre-training models with unlabeled data

Given a few labeled data and a pool of unlabeled data, we combine
reference prior and the likelihood function into a single objective

max
π

γIπ(w; yu, xu) + Ew∼π [log p(yn | xn,w)] , (2)

where γ is a hyper parameter, xn, yn are labeled samples, xu is an
unlabeled sample.

6



Experiments on semi-supervised learning

Accuracy (%) of semi-supervised learning methods on CIFAR-10

Method #Samples
50 100 250 500 1000

PiModel - - 46.58 58.18 68.47
PseudoLab - - 50.02 59.45 69.09
Mixup - - 52.57 63.86 74.28
VAT - - 63.97 73.89 81.32
Mean Teacher - - 52.68 57.99 82.68
MixMatch 64.21 80.29 88.91 90.35 92.25
FixMatch 86.19 90.1 94.9 94.0 94.3
SelfMatch 93.19 (40) - 95.13 - -
FlexMatch 95.0 - 95.2 - -

Deep Reference Prior 85.5 88.5 92.1 93.1 93.5
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Discussion

Reference priors have a unique ability to select diverse parts of the
model space.

Reference priors provide an information-theoretically optimal way to
pre-train models using unlabeled data.

This is the first implementation of reference priors for deep networks
that maintains their characteristic feature, namely that they are
supported on a discrete set.

A two-stage reference prior can be used for transfer learning.

Github: github.com/grasp-lyrl/deep_reference_priors
Arxiv: arxiv.org/abs/2202.00187

Visit our poster (#711) at Hall E - Wednesday 6:30pm to 8:30pm
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