

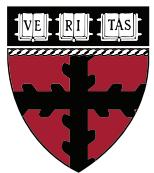
Data Scaling Laws in NMT: The Effect of Noise and Architecture

Yamini Bansal^{1,2} Behrooz Ghorbani² Ankush Garg² Biao Zhang³
Maxim Krikun² Colin Cherry² Behnam Neyshabur² Orhan Firat²

¹Harvard University

²Google

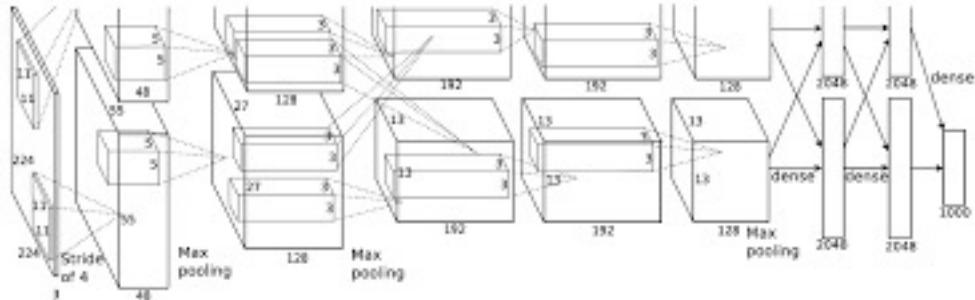
³University of Edinburgh



Harvard John A. Paulson
School of Engineering
and Applied Sciences

More data is better

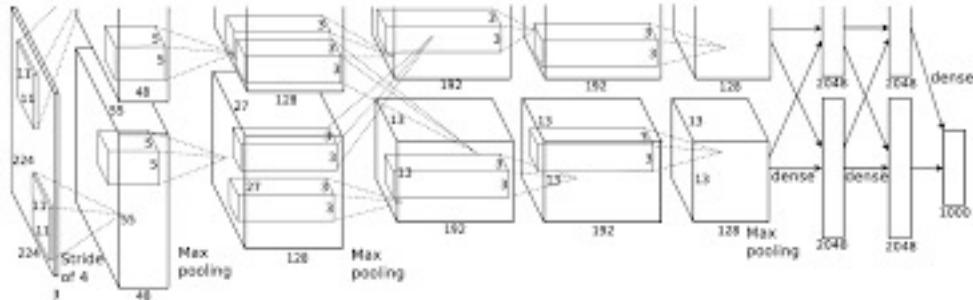
Reliable way to improve performance: Add more data!



AlexNet

More data is better

Reliable way to improve performance: Add more data!



AlexNet

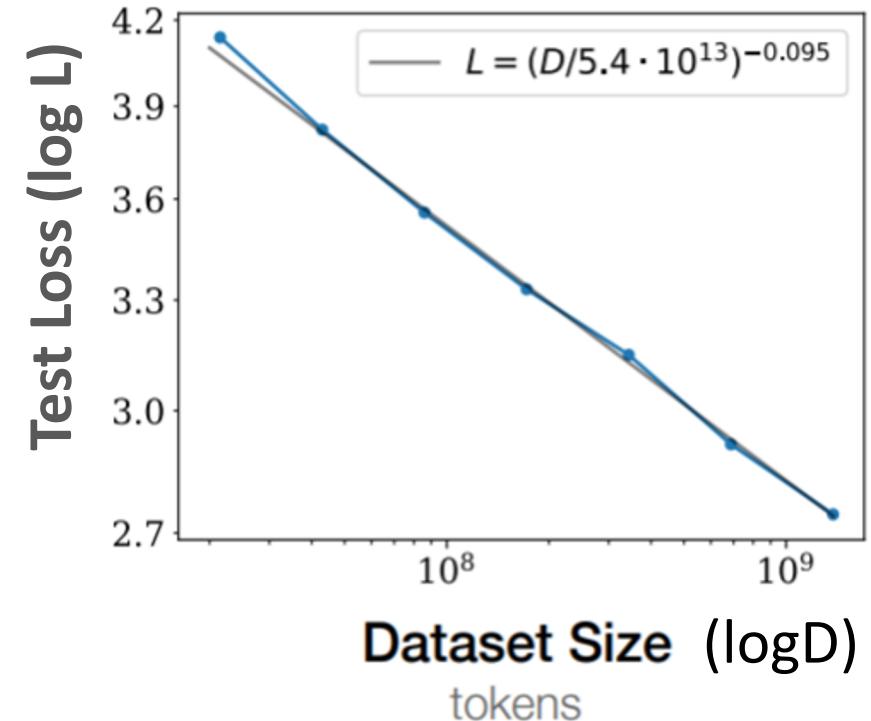
Sample-efficiency: How does performance *scale* with increasing data?

Measuring sample-efficiency: Neural scaling laws

Measuring sample-efficiency: Neural scaling laws

Test Loss (L) empirically scales as a power law in D = Training Dataset size

$$L = \alpha \frac{1}{D^p}$$



From Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J. and Amodei, D., 2020. Scaling laws for neural language models. *arXiv preprint arXiv:2001.08361*.

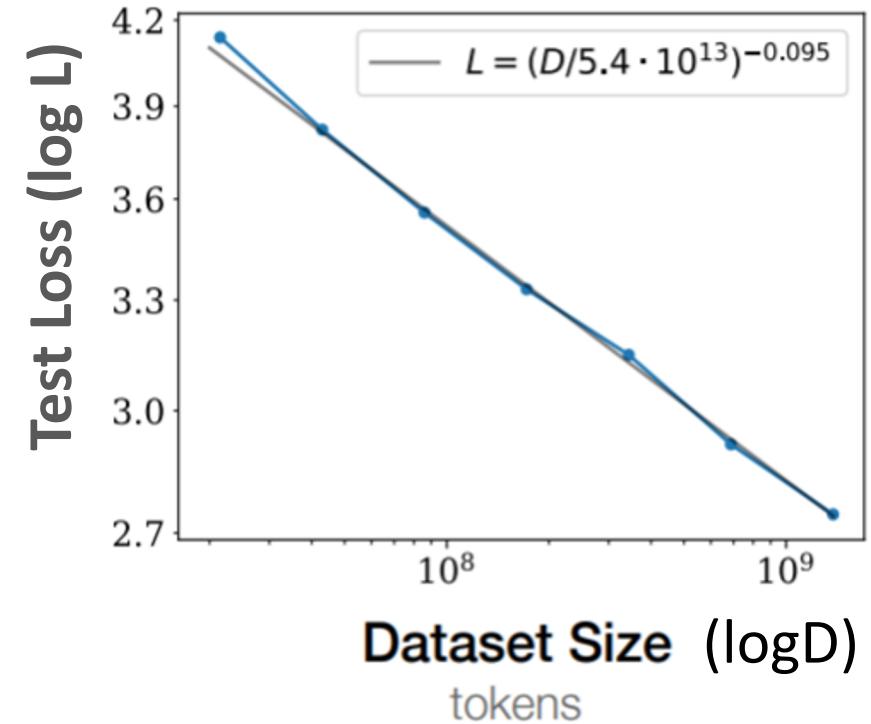
See also Hestness et. al. (2017), Rosenfeld et. al. (2019)

Measuring sample-efficiency: Neural scaling laws

Test Loss (L) empirically scales as a power law in D = Training Dataset size

$$L = \alpha \frac{1}{D^p}$$

Exponent p summarizes the ‘sample-efficiency’



From Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J. and Amodei, D., 2020. Scaling laws for neural language models. *arXiv preprint arXiv:2001.08361*.

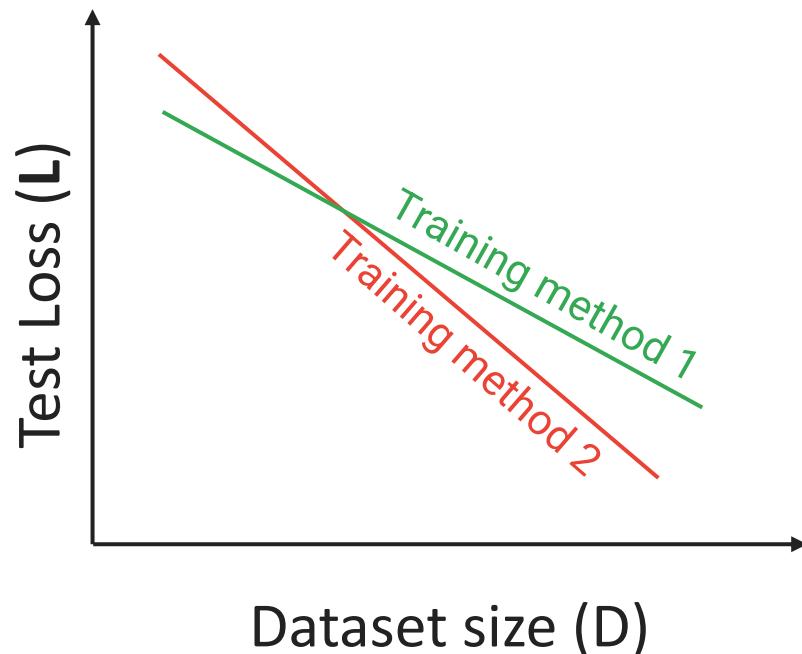
See also Hestness et. al. (2017), Rosenfeld et. al. (2019)

Why study data scaling laws?

Why study data scaling laws?

Practical Reasons

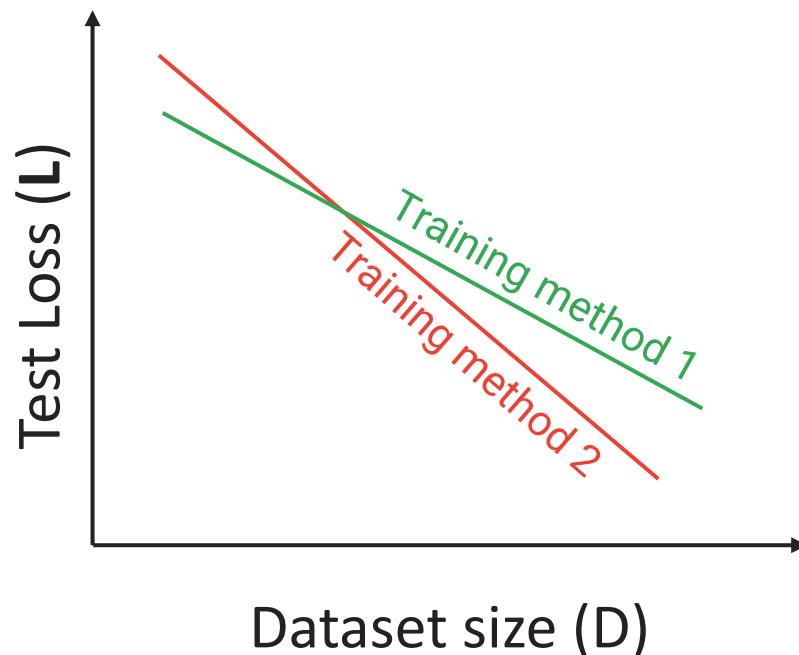
- Make predictions for larger scale experiments
- Comparisons at single point are not enough



Why study data scaling laws?

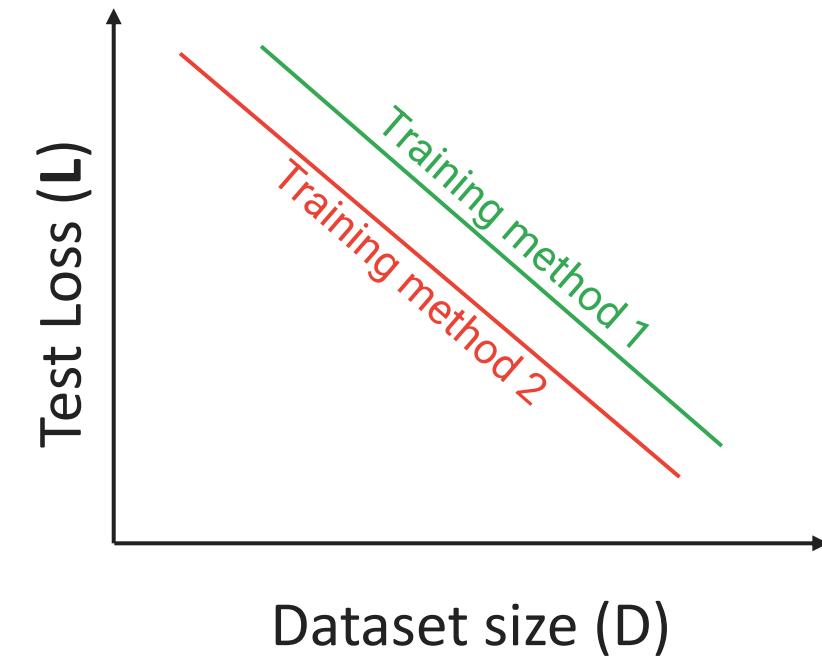
Practical Reasons

- Make predictions for larger scale experiments
- Comparisons at single point are not enough



“Theoretical” Reasons

- If many methods scale similarly, can we understand why?
- How can we do better?



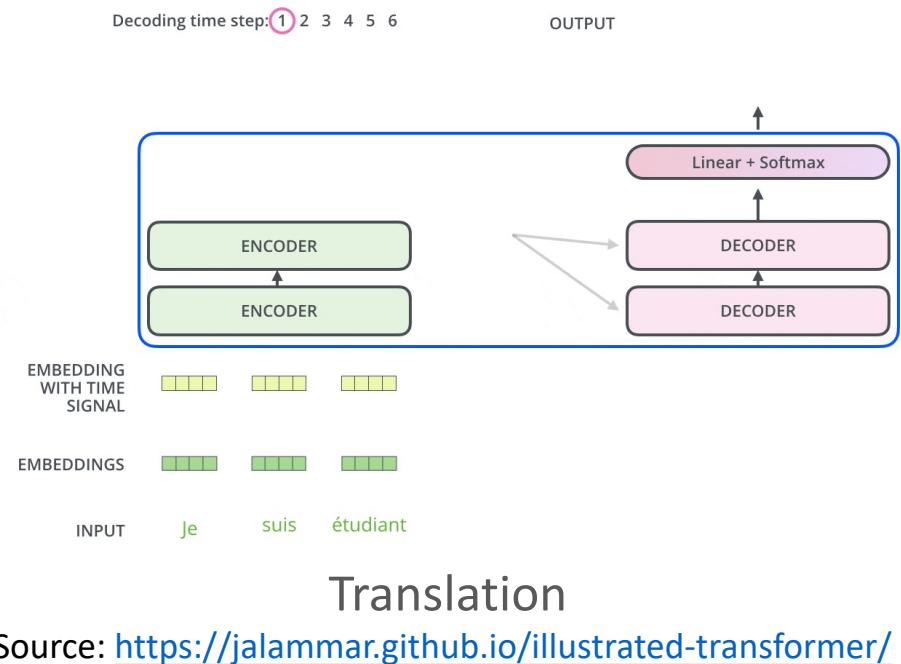
Our contributions

Which aspects of the training setup affect the data scaling empirically?

Our contributions

Which aspects of the training setup affect the data scaling empirically?

- Scaling laws for Neural Machine Translation (NMT)
 - Encoder-Decoder Transformers
 - English → German

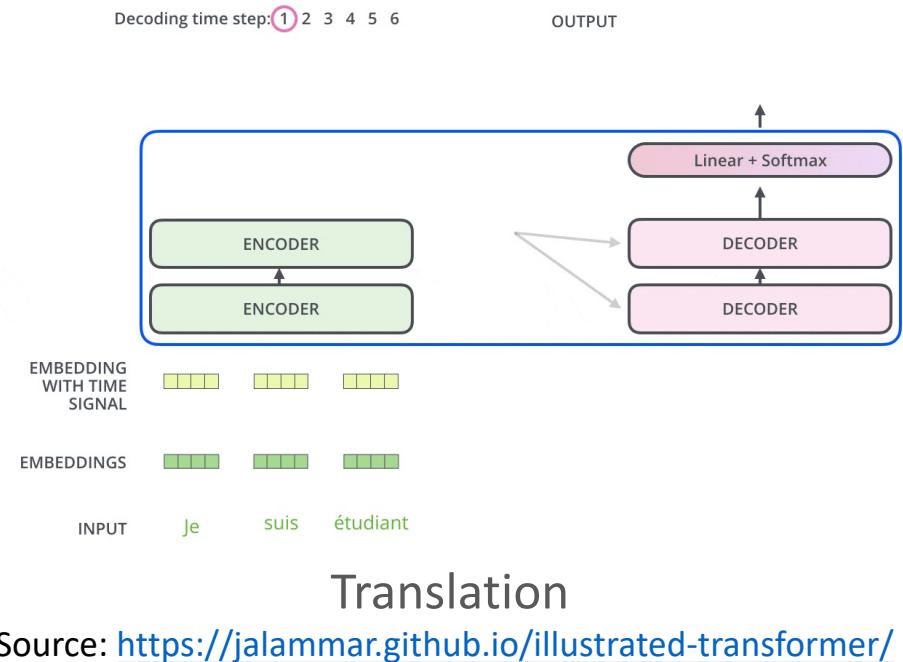


Our contributions

Which aspects of the training setup affect the data scaling empirically?

- Scaling laws for Neural Machine Translation (NMT)
 - Encoder-Decoder Transformers
 - English → German
- Interventions to training setup
 - Change architecture
 - Change noise in training distribution

Important practical tools

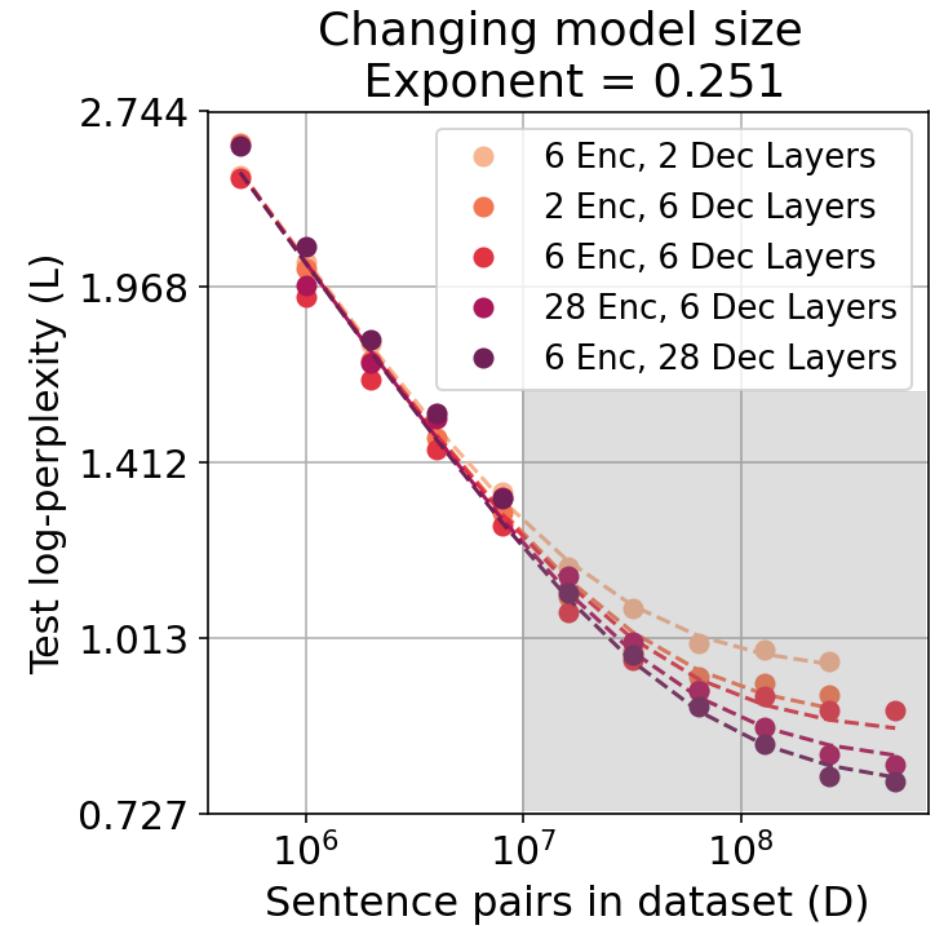


NMT Data Scaling Law

NMT Data Scaling Law

We fit the scaling law

$$\text{Loss} = \alpha(1/D + C_m)^p$$



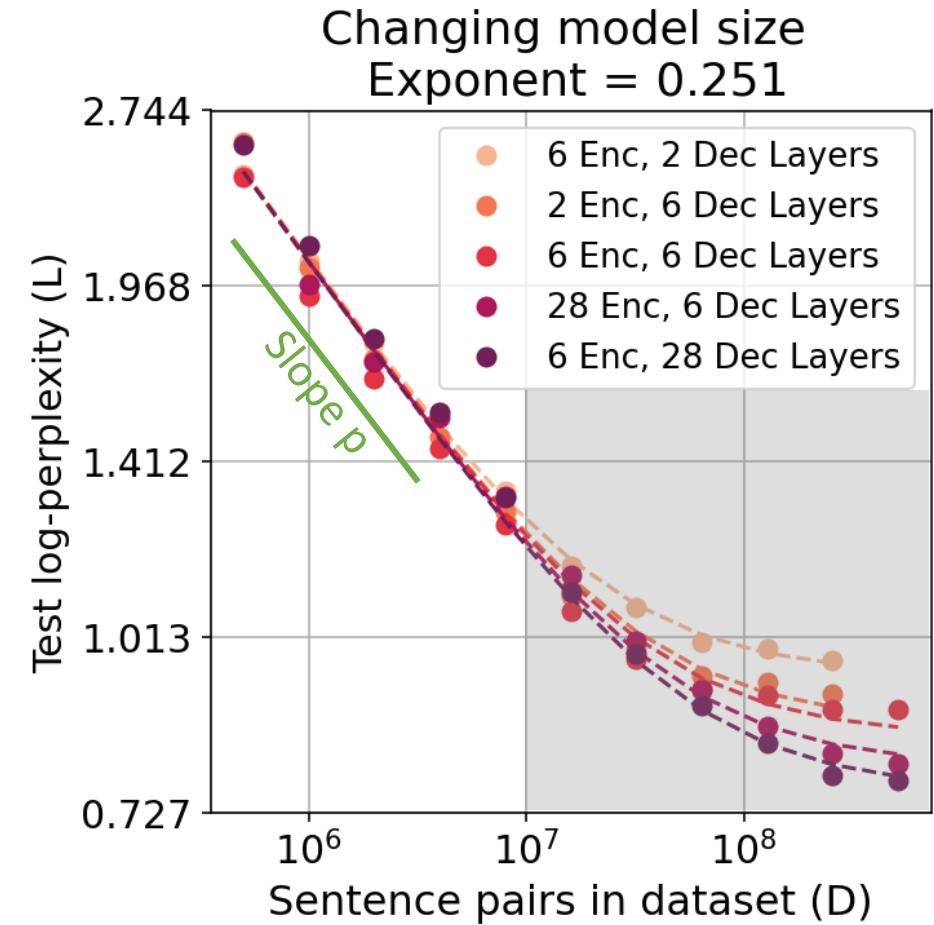
NMT Data Scaling Law

We fit the scaling law

$$\text{Loss} = \alpha \left(\frac{1}{D} + \frac{C_m}{D} \right)^p$$

Data Limited Regime

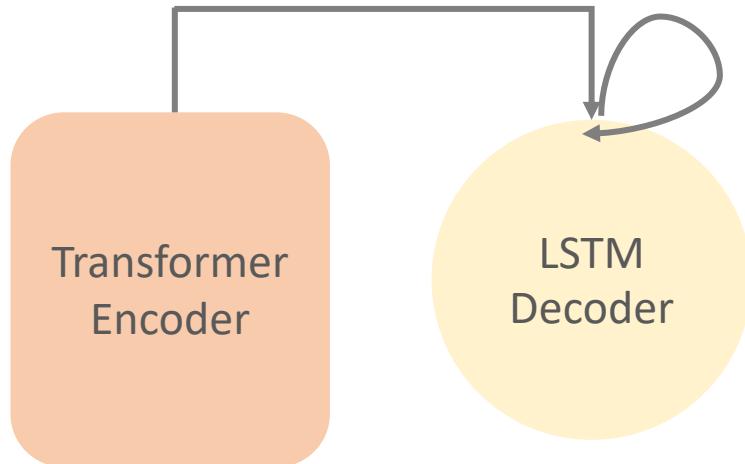
- Increasing model size doesn't help
- Exponent independent of encoder-decoder depth ratio



Effect of Architecture

Effect of Architecture

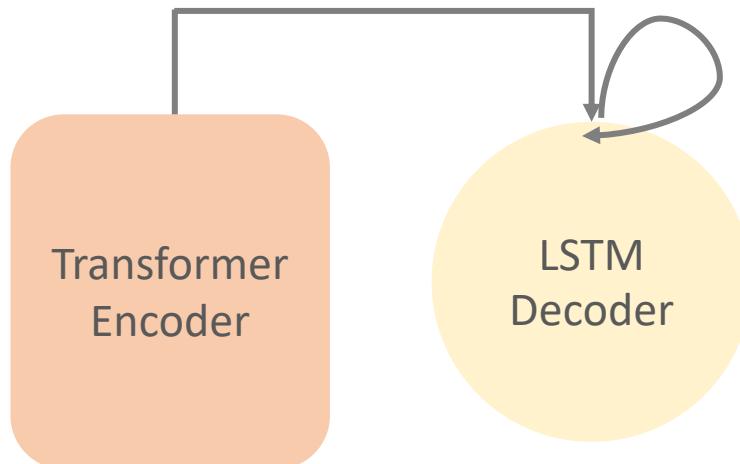
Transformer Encoder – LSTM Decoder



Common in industry applications

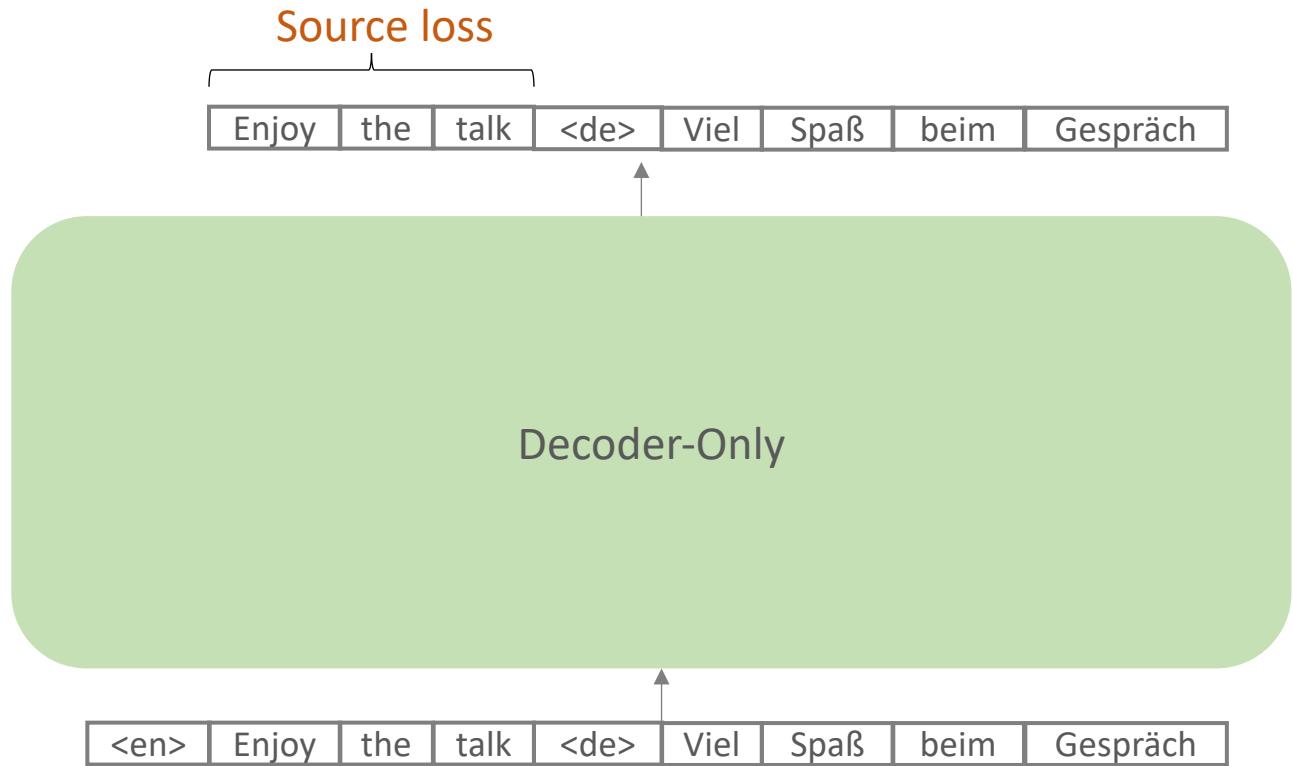
Effect of Architecture

Transformer Encoder – LSTM Decoder



Common in industry applications

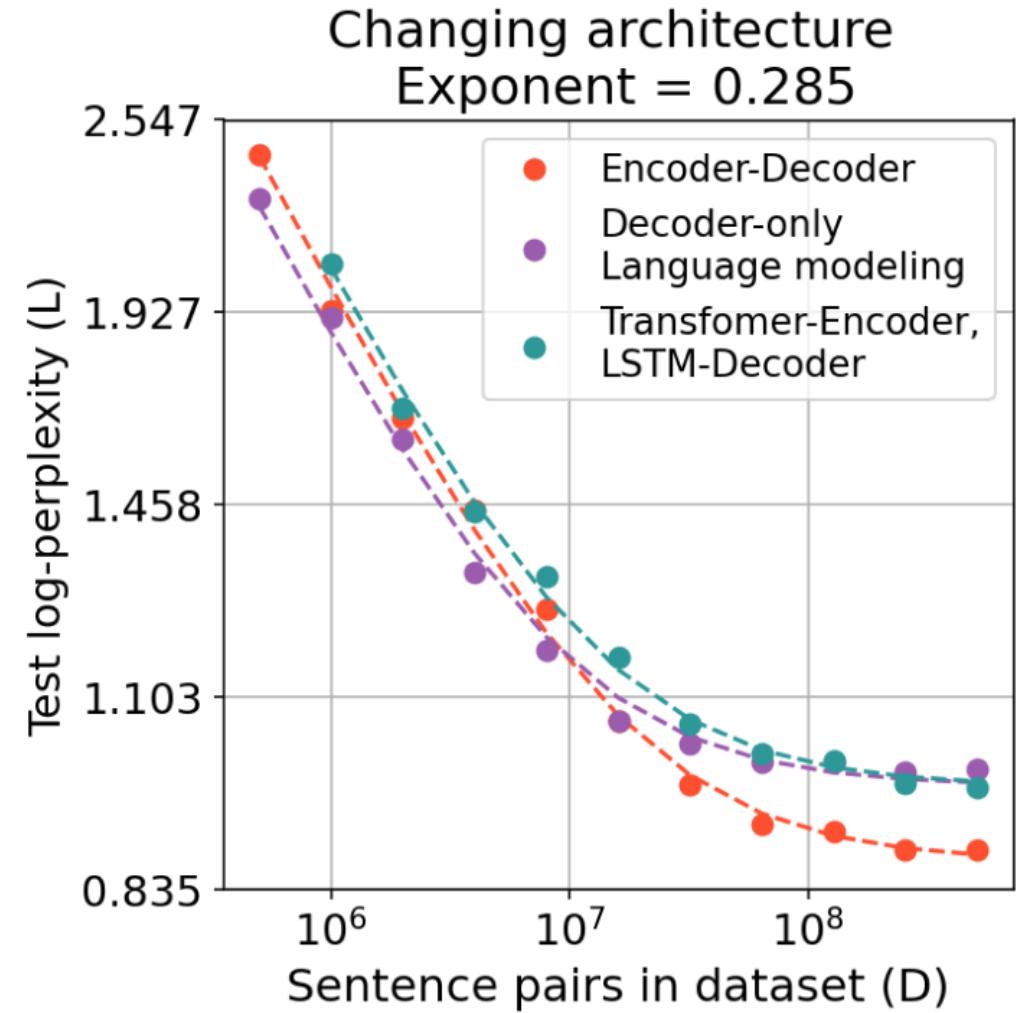
Decoder-only Transformer (GPT)



Same setup as GPT models

Effect of Architecture

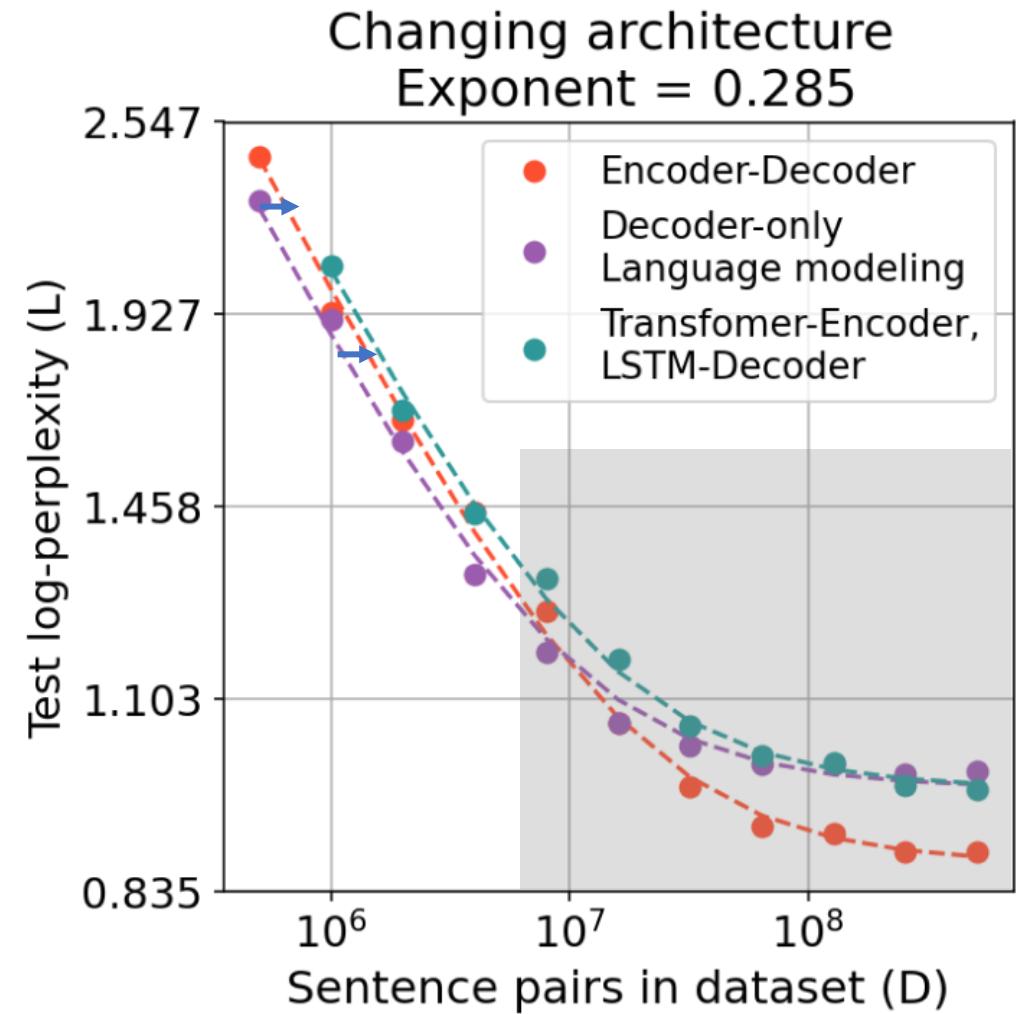
$$\text{Loss} = \alpha_m (1/D + C_m)^p$$



Effect of Architecture

$$\text{Loss} = \alpha_m (1/D + C_m)^p$$

- Common exponent p
- We can compensate for a weaker architecture by adding more data

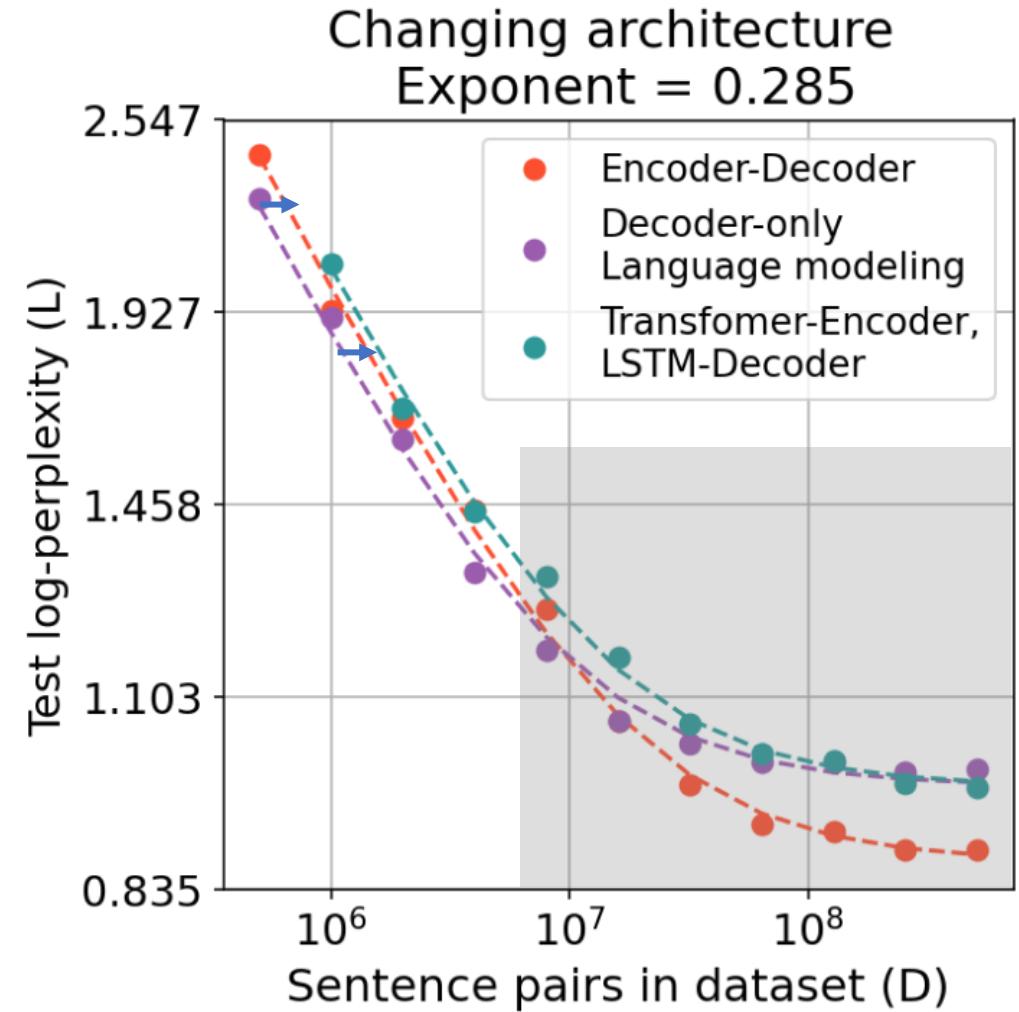


Effect of Architecture

$$\text{Loss} = \alpha_m (1/D + C_m)^p$$

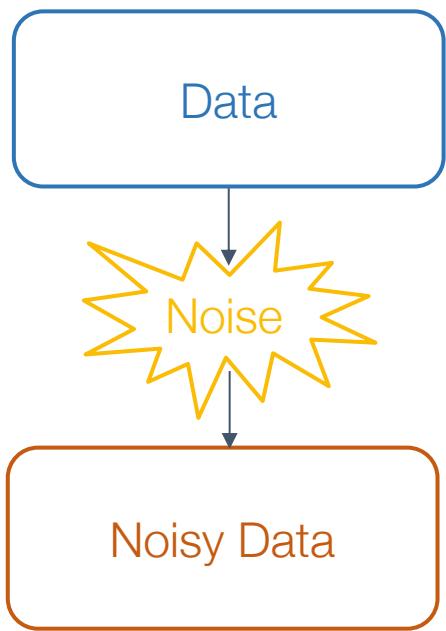
- Common exponent p
- We can compensate for a weaker architecture by adding more data

If you have other priorities (eg: compressibility), you can choose a worse architecture, by training it with more data



Effect of Noise

Adding synthetic noise

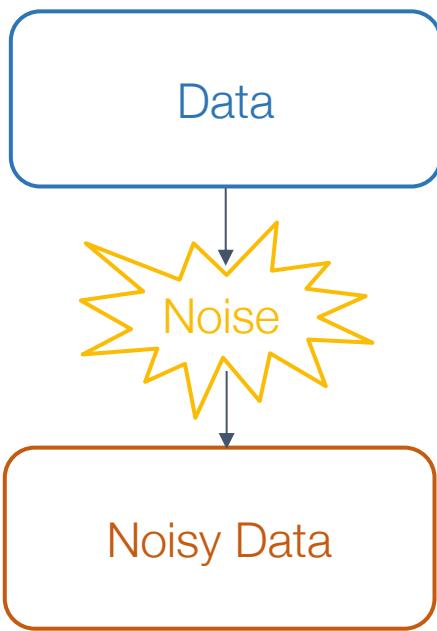


Source Noise: <2de> Me%t all our products
Seiten, die auf „Siemens (Einheit)“ verlinken - brandfeuer.de

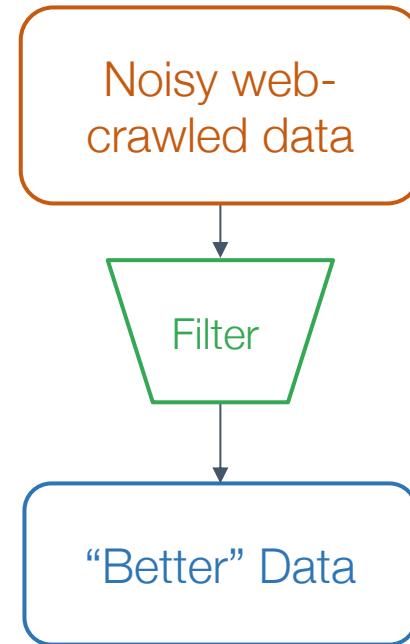
Target Noise: <2de> These allergy-sufferers often
wonder if purifiers are good for airborne allergies.
Profus=on ist4eine Kühr/noe Desig~er Muskel Zelle

Effect of Noise

Adding synthetic noise



Filtering – Subtracting noise



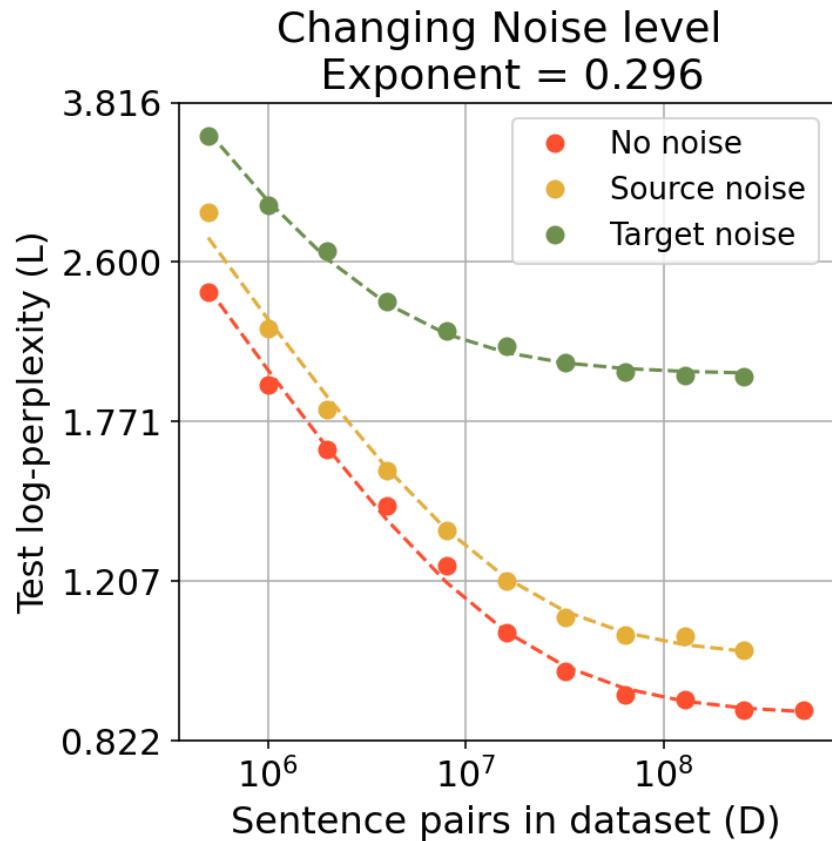
Source Noise: <2de> Me%t all our products
Seiten, die auf „Siemens (Einheit)“ verlinken - brandfeuer.de

Target Noise: <2de> These allergy-sufferers often
wonder if purifiers are good for airborne allergies.
Profus=on ist4eine Kühr/noe Desig~er Muskel Zelle

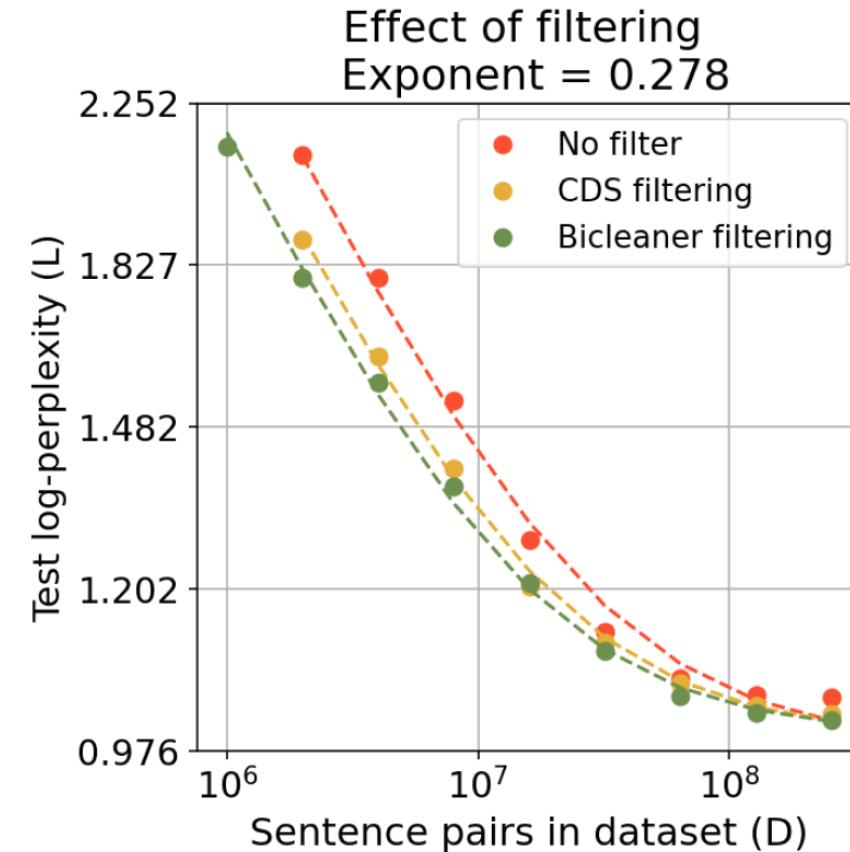
- Wrong language
- Language model score for fluency
- Unaligned sentences
- Too many special characters

Effect of Noise

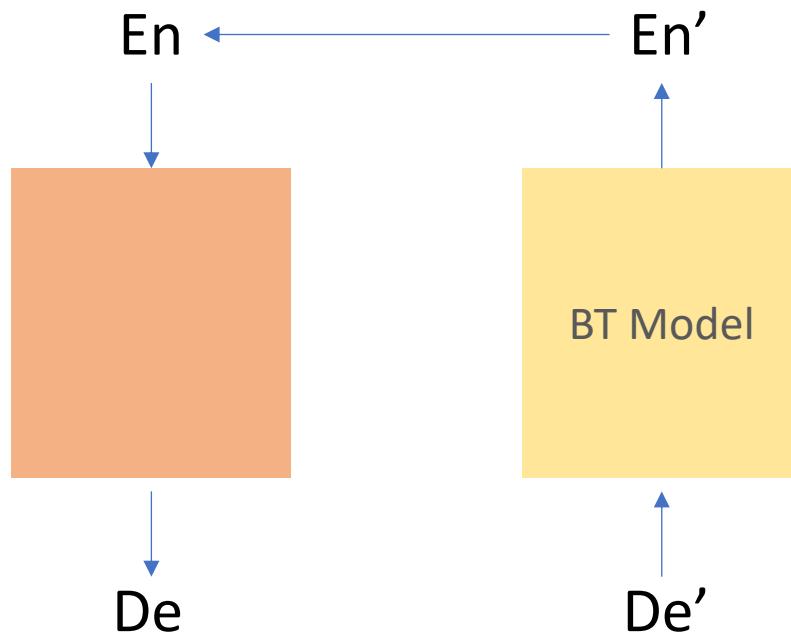
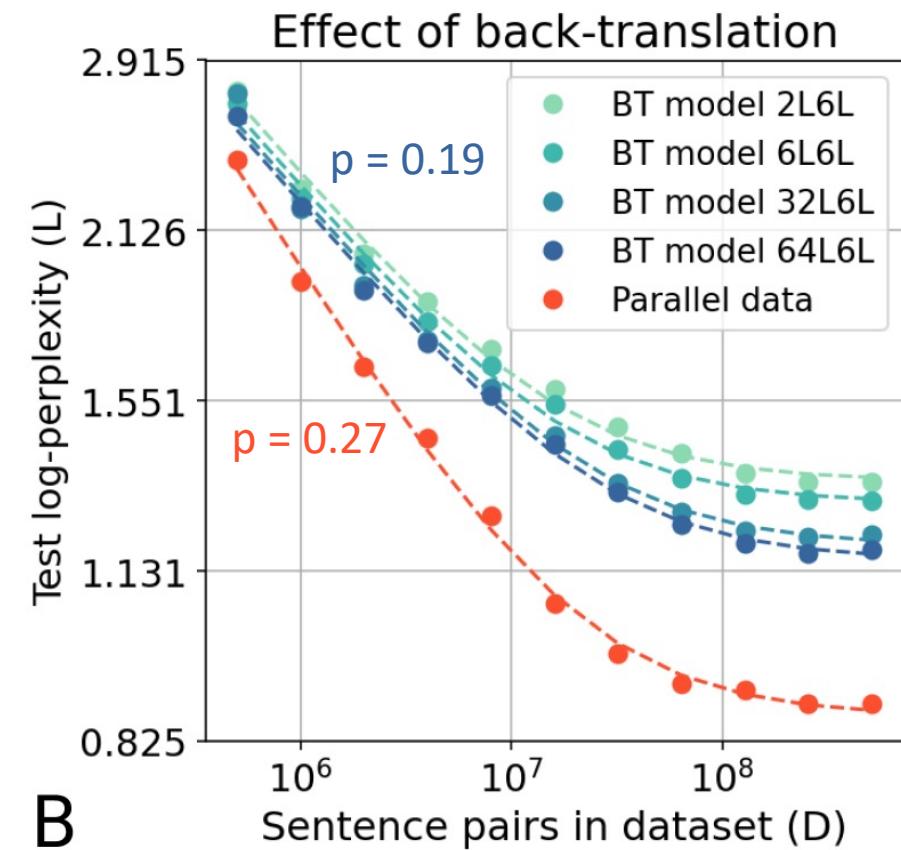
Adding synthetic noise



Filtering



Change in exponent: Back-translation



Takeaways and open questions

Practical:

- Scaling laws - rigorous tool to drive practical trade-offs
- You can compensate for certain “worse” choices like noise and sub-optimal architecture by adding a constant fraction of more data

Theoretical:

What is the “inductive bias” that keeps exponent similar?