Continual Repeated Annealed Flow Transport Monte Carlo (CRAFT)

Alex Matthews
DeepMind

Michael Arbel
INRIA
Univ. Grenoble Alpes

Danilo J. Rezende DeepMind

Arnaud Doucet
DeepMind

github.com/deepmind/annealed_flow_transport

Combining SMC samplers with normalizing flows

Normalizing flows ———— CRAFT ————— SMC samplers

Fast Incorporate symmetries

Parameter intensive Topologically constrained

MCMC sampling Annealing Resampling

Importance sampling

Significantly improves on prior work

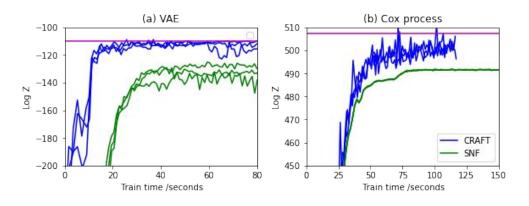
Annealed Flow Transport (AFT)

Arbel et al. 2021

500 450 400 350 300 Method 250 CRAFT 200 10 20 200 Number particles

Stochastic Normalizing Flows (SNF)

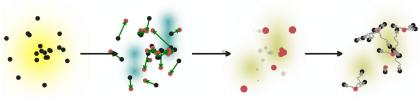
Wu et al. 2020



There are good conceptual reasons for improvements.

Flow Transport IS + Resampling

MCMC



For fixed/learnt flows we have a sequence of steps between annealing distributions.

Algorithm 1 SMC-NF-step

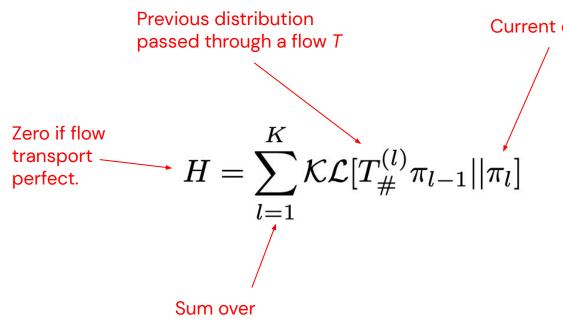
- 1: **Input:** Approximations (π_{k-1}^N, Z_{k-1}^N) to (π_{k-1}, Z_{k-1}) , normalizing flow T_k , unnormalized annealed targets γ_{k-1} and γ_k and resampling threshold $A \in [1/N, 1)$.
- 2: **Output:** Particles at iteration k: $\pi_k^N = (X_k^i, W_k^i)_{i=1}^N$, approximation Z_k^N to Z_k .
- 3: Transport particles: $Y_k^i = T_k(X_{k-1}^i)$.
- 4: Compute IS weights: $w_k^i \leftarrow W_{k-1}^i G_k(X_{k-1}^i) \text{ // unnormalized} \\ W_k^i \leftarrow w_k^i / \sum_{j=1}^N w_k^j \text{ // normalized}$
- 5: Estimate normalizing constant Z_k : $Z_k^N \leftarrow Z_{k-1}^N(\sum_{i=1}^N w_k^i)$.
- 6: Compute effective sample size ESS_k^N .
- 7: if $ESS_k^N \leq NA$ then
- 8: Resample N particles denoted abusively also Y_k^i according to the weights W_k^i , then set $W_k^i = \frac{1}{N}$.
- 9: end if
- 10: Sample $X_k^i \sim \mathcal{K}_k(Y_k^i, \cdot)$. // MCMC
- 11: Return (π_k^N, Z_k^N) .

Algorithm 3 CRAFT-deployment

- 1: **Input:** Fixed/trained NFs $\{T_k\}_{k=1}^K$, number of particles N, unnormalized annealed targets $\{\gamma_k\}_{k=0}^K$ with $\gamma_0 = \pi_0$, resampling threshold $A \in [1/K, 1)$.
- 2: **Output:** Approximations (π_K^N, Z_K^N) to (π, Z) .
- 3: Sample $X_0^i \sim \pi_0$ and set $W_0^i = \frac{1}{N}$ and $Z_0^N = 1$.
- 4: **for** k = 1, ..., K **do**
- 5: $(\pi_k^N, Z_k^N) \leftarrow ext{SMC-NF-step}(\pi_{k-1}^N, Z_{k-1}^N, T_k)$
- 6: end for
- 7: Return (π_K^N, Z_K^N) .

See also our AFT talk from ICML 2021.

CRAFT flow training objective



transitions between

temperatures.

Current distribution

Estimate objective and gradients using current importance sampling estimate.

Gradients local to transitions so no need to backprop through discrete steps.

Further analysis in paper.

Train particle MCMC samplers for hard physics problems

Use CRAFT to generate particle MCMC proposals.

Test on ϕ^4 -theory near criticality.

Can incorporate symmetries of the problem into the flow.

CRAFT outperforms strong baselines.

