Robust Imitation Learning against Variations in Environment Dynamics

Jongseong Chae¹, Seungyul Han², Whiyoung Jung¹, Myungsik Cho¹, Sungho Choi¹, Youngchul Sung¹

> 1 School of Electrical Engineering, KAIST 2 Artificial Intelligence Graduate School, UNIST

> > ICML 2022

Imitation Learning

- Reward function design: it may be difficult to make a reward function for successful application of RL
- IL learns a policy from an Expert's Demonstration $\tau_E = (s_0, a_0, s_1, a_1, \cdots)$
- Previous methods: Behavior Cloning, GAIL, etc.

- 4 回 ト 4 ヨ ト 4 ヨ ト

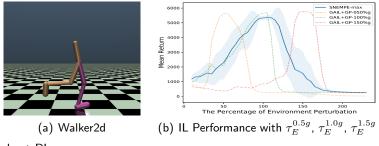
Robust Imitation Learning

- Robustness: the underlying dynamics are highly likely to be perturbed in the real world
- We need a Robust IL framework that can perform well in various environments with different dynamics by using expert demonstrations

✓ For example, $\tau_E^{rainy\ day}$, $\tau_E^{clear\ day}$, $\tau_E^{snowy\ day}$

イロン イヨン イヨン

Motivation



Robust RL

 $\max_{\pi} \min_{\mathcal{P}^i \in P} \mathbb{E}_{\pi}[G_t | \mathcal{P}^i]$

• An IL algorithm that is trained in a single environment and uses multiple expert demonstrations $(\tau_E^{0.5g}, \tau_E^{1.0g}, \tau_E^{1.5g})$

 $\min_{\pi} \max\{D_1(\tau_E^{0.5g}, \tau_{\pi}), D_2(\tau_E^{1.0g}, \tau_{\pi}), D_3(\tau_E^{1.5g}, \tau_{\pi})\}$

→ Policy interaction with the single environment is not enough to handle the dynamics variation even with multiple expert demonstrations => = ∞ ∞ ∞ Jongseong Chae (KAIST) RIME ICML 2022 4/12

Problem Formulation

• Setup: An MDP collection $C = \{M = \langle S, A, P_{\zeta}, r, \gamma \rangle, \zeta \in Z\}$

- ✓ Transition probability P_{ζ} modeling the dynamics is parameterized by dynamics parameter ζ which is in a continuous parameter space
- $\checkmark~\mathcal{S}$ and \mathcal{A} are the same for all members of $\mathcal C$
- \checkmark Reward function r is not available
- Goal: To learn a policy π that performs well for all members in the MDP collection $\mathcal C$
- *N* MDPs with dynamics $\mathcal{P}_{\zeta_1}, \cdots, \mathcal{P}_{\zeta_N}$ are sampled among \mathcal{C}
- The sampled environments are for both *policy interaction* and *expert demonstrations*

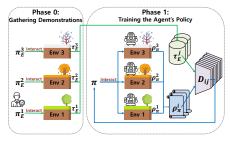


Figure: Overall Structure

Simple Approach: Occupancy Measure Matching

In a Single Environment

$$\rho_{\pi}(s,a) = \mu_0(s)\pi(a|s) + \gamma \int_{(s',a')} \mathcal{P}(s|s',a')\rho_{\pi}(s',a')\pi(a|s)$$

- The Bellman flow constraint has the unique solution ρ_{π}
- \rightarrow There is a 1-to-1 correspondence between π and ρ
- \rightarrow We can seek a policy π close to the expert policy π_E by using the occupancy measure matching technique that is used in GAIL

In Multiple Environments

$$\rho_{\pi}(s,a) = \mu_0(s)\pi(a|s) + \frac{\gamma}{N} \sum_{i=1}^N \int_{(s',a')} \mathcal{P}_{\zeta_i}(s|s',a')\rho_{\pi}^i(s',a')\pi(a|s)$$

✓ There exist many solutions, so $\rho_{\pi} = \frac{1}{N} \sum_{i=1}^{N} \rho_{\pi}^{i}$ can be many

 \rightarrow The relation between π and ρ can be 1-to-many

The Proposed Robust Imitation Learning Framework

An Objective Function not requiring Occupancy Measures:

$$\min_{\pi} \mathbb{E}_{s \sim \frac{1}{N} \sum_{i=1}^{N} \mu_{\pi}^{i}} \left[\sum_{j=1}^{N} \lambda_{j}(s) \cdot \mathcal{D}(\pi(\cdot|s), \pi_{E}^{j}(\cdot|s)) \right]$$
(1)

✓ $\lambda_j(s)$ is the weight to determine how much $\pi_E^j(\cdot|s)$ is imitated, \mathcal{D} is a divergence between two policy distributions

✓ However, (1) requires the expert policies π^j_E which are not available

Theorem (Practical Objective Function):

$$\min_{\pi} \sum_{i=1}^{N} \sum_{j=1}^{N} \max_{D_{ij}} \left\{ \mathbb{E}_{(s,a) \sim \rho_{\pi}^{i}} \left[\lambda_{j}(s) \log(1 - D_{ij}(s,a)) \right] + \mathbb{E}_{(s,a) \sim \rho_{E}^{j}} \left[\frac{\mu_{\pi}^{i}(s)}{\mu_{E}^{j}(s)} \lambda_{j}(s) \log(D_{ij}(s,a)) \right] \right\} \quad (2)$$

✓ D_{ij} is a discriminator that distinguishes whether (s, a) is from policy π interacting with *i*-th sampled environment or from *j*-th expert π_E^j

✓ (2) requires expert demonstrations $\tau_E^j \sim \rho_E^j$ not expert policies π_E^j

7/12

Experiments: Baseline Algorithms

- Even without guarantee of the recovery of policy from occupancy measure, we can apply the occupancy meausure matching technique to the multiple environments setting
- We compared our algorithm with the following baseline algorithms
 - OMME (closest to our algorithm)

$$\min_{\pi} \sum_{j=1}^{N} \lambda_j \mathcal{D}_{JS}(\bar{\rho}_{\pi}, \bar{\rho}_E^j)$$

GAIL-mixture

$$\min_{\pi} \mathcal{D}_{JS} \left(\sum_{i=1}^{N} \bar{\rho}_{\pi}^{i} / N, \sum_{j=1}^{N} \bar{\rho}_{E}^{j} / N \right)$$

GAIL-single

$$\min_{\pi} \sum_{i=1}^{N} \mathcal{D}_{JS}(\bar{\rho}_{\pi}^{i}, \bar{\rho}_{E}^{i})$$

- 4 回 ト 4 三 ト 4 三 ト

Experiments: 1-D Perturbation Case

MuJoCo tasks with 1-D dynamics perturbation (gravity or mass)
 → Our algorithm with N = 2 sampled environments (50%ζ₀, 150%ζ₀) is
 robust over the dynamics variation between the sampled dynamics.

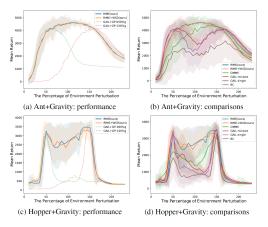


Figure: Performance for our algorithm and baseline algorithms for MuJoCo tasks 🚊 🛶 🔿

Experiments: 2-D Perturbation Case

MuJoCo tasks with 2-D dynamics perturbation (gravity and mass)
 → Our algorithm performs well within the joint gravity-mass dynamics parameter space by only sampling the four corner points.

Algorithm	$\ $ Hopper + (G&M)	Walker2d + (G&M)	HalfCheetah + (G&M)	Ant + (G&M)
RIME (ours)	3043.3 / 2430.8	4463.4 / 3824.1	3721.3 / 2753.1	4671.7 / 4233.5
RIME+WSD (ours)	2936.9 / 2331.6	4646.4 / 4000.2	3717.9 / 2891.7	4651.4 / 4304.5
OMME	2573.4 / 1986.4	4488.8 / 3029.3	3498.5 / 2502.2	4625.3 / 3594.5
GAIL-mixture	1636.4 / 712.0	3907.8 / 1245.1	3018.6 / 1982.3	3994.8 / 2746.1
GAIL-single	1684.9 / 840.0	3844.8 / 2484.2	3199.1 / 2072.6	3799.7 / 2194.1
BC	500.2 / 317.2	330.0 / 211.0	1289.3 / 30.2	1728.2 / 1032.7

Figure: The robustness performance of all algorithms

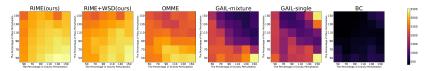


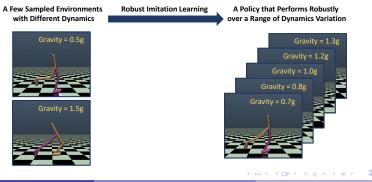
Figure: Performance for our algorithm and baseline algorithms for Hopper task

Jongseong	

< □ > < 同 > < 三 > < 三 >

Conclusion

- In this paper, we have considered how to improve the robustness of IL to address both robustness and reward function design
- We propose a robust IL framework based on a few environments with sampled dynamics parameters
- Our proposed IL algorithm shows superior performance in robustness over the dynamics variation compared to the conventional IL baselines



Thank you!

3

イロト イヨト イヨト イヨト