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Imitation Learning

Reward function design: it may be difficult to make a reward function for
successful application of RL

IL learns a policy from an Expert’s Demonstration τE = (s0, a0, s1, a1, · · · )

Previous methods: Behavior Cloning, GAIL, etc.
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Robust Imitation Learning

Robustness: the underlying dynamics are highly likely to be perturbed in the
real world

We need a Robust IL framework that can perform well in various
environments with different dynamics by using expert demonstrations

✓ For example, τ rainy day
E , τ clear day

E , τsnowy day
E
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Motivation

(a) Walker2d (b) IL Performance with τ0.5g
E , τ1.0g

E , τ1.5g
E

Robust RL

max
π

min
Pi∈P

Eπ[Gt|Pi]

An IL algorithm that is trained in a single environment and uses multiple
expert demonstrations (τ0.5gE , τ1.0gE , τ1.5gE )

min
π

max{D1(τ
0.5g
E , τπ), D2(τ

1.0g
E , τπ), D3(τ

1.5g
E , τπ)}

→ Policy interaction with the single environment is not enough to handle
the dynamics variation even with multiple expert demonstrations
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Problem Formulation

Setup: An MDP collection C = {M =< S,A,Pζ , r, γ >, ζ ∈ Z}
✓ Transition probability Pζ modeling the dynamics is parameterized by

dynamics parameter ζ which is in a continuous parameter space

✓ S and A are the same for all members of C
✓ Reward function r is not available

Goal: To learn a policy π that performs well for all members in the MDP
collection C

N MDPs with dynamics Pζ1 , · · · ,
PζN are sampled among C

The sampled environments are for
both policy interaction and expert
demonstrations
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Figure: Overall Structure
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Simple Approach: Occupancy Measure Matching

In a Single Environment

ρπ(s, a) = µ0(s)π(a|s) + γ

∫
(s′,a′)

P(s|s′, a′)ρπ(s′, a′)π(a|s)

✓ The Bellman flow constraint has the unique solution ρπ

→ There is a 1-to-1 correspondence between π and ρ

→ We can seek a policy π close to the expert policy πE by using the occupancy
measure matching technique that is used in GAIL

In Multiple Environments

ρπ(s, a) = µ0(s)π(a|s) +
γ

N

N∑
i=1

∫
(s′,a′)

Pζi (s|s
′, a′)ρiπ(s

′, a′)π(a|s)

✓ There exist many solutions, so ρπ = 1
N

∑N
i=1 ρ

i
π can be many

→ The relation between π and ρ can be 1-to-many
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The Proposed Robust Imitation Learning Framework

An Objective Function not requiring Occupancy Measures:

min
π

Es∼ 1
N

∑N
i=1 µi

π

 N∑
j=1

λj(s) · D(π(·|s), πj
E(·|s))

 (1)

✓ λj(s) is the weight to determine how much πj
E(·|s) is imitated, D is a

divergence between two policy distributions

✓ However, (1) requires the expert policies πj
E which are not available

Theorem (Practical Objective Function):

min
π

N∑
i=1

N∑
j=1

max
Dij

{
E
(s,a)∼ρiπ

[
λj(s) log(1 − Dij(s, a))

]
+ E

(s,a)∼ρ
j
E

[
µi
π(s)

µ
j
E
(s)

λj(s) log(Dij(s, a))

]}
(2)

✓ Dij is a discriminator that distinguishes whether (s, a) is from policy π

interacting with i-th sampled environment or from j-th expert πj
E

✓ (2) requires expert demonstrations τ jE ∼ ρjE not expert policies πj
E
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Experiments: Baseline Algorithms

Even without guarantee of the recovery of policy from occupancy measure,
we can apply the occupancy meausure matching technique to the multiple
environments setting

We compared our algorithm with the following baseline algorithms

OMME (closest to our algorithm)

min
π

N∑
j=1

λjDJS(ρ̄π , ρ̄
j
E)

GAIL-mixture

min
π

DJS(
N∑
i=1

ρ̄iπ/N,

N∑
j=1

ρ̄jE/N)

GAIL-single

min
π

N∑
i=1

DJS(ρ̄
i
π , ρ̄

i
E)
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Experiments: 1-D Perturbation Case

MuJoCo tasks with 1-D dynamics perturbation (gravity or mass)
→ Our algorithm with N = 2 sampled environments (50%ζ0, 150%ζ0) is
robust over the dynamics variation between the sampled dynamics.

Figure: Performance for our algorithm and baseline algorithms for MuJoCo tasks
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Experiments: 2-D Perturbation Case

MuJoCo tasks with 2-D dynamics perturbation (gravity and mass)
→ Our algorithm performs well within the joint gravity-mass dynamics
parameter space by only sampling the four corner points.

Figure: The robustness performance of all algorithms

Figure: Performance for our algorithm and baseline algorithms for Hopper task
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Conclusion

In this paper, we have considered how to improve the robustness of IL to
address both robustness and reward function design

We propose a robust IL framework based on a few environments with
sampled dynamics parameters

Our proposed IL algorithm shows superior performance in robustness over
the dynamics variation compared to the conventional IL baselines

Gravity = 1.3g

Gravity = 1.2g

Gravity = 1.0g

Gravity = 0.8g

A Few Sampled Environments 
with Different Dynamics

Robust Imitation Learning A Policy that Performs Robustly
over a Range of Dynamics Variation

Gravity = 0.7g

Gravity = 0.5g

Gravity = 1.5g
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Thank you!
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