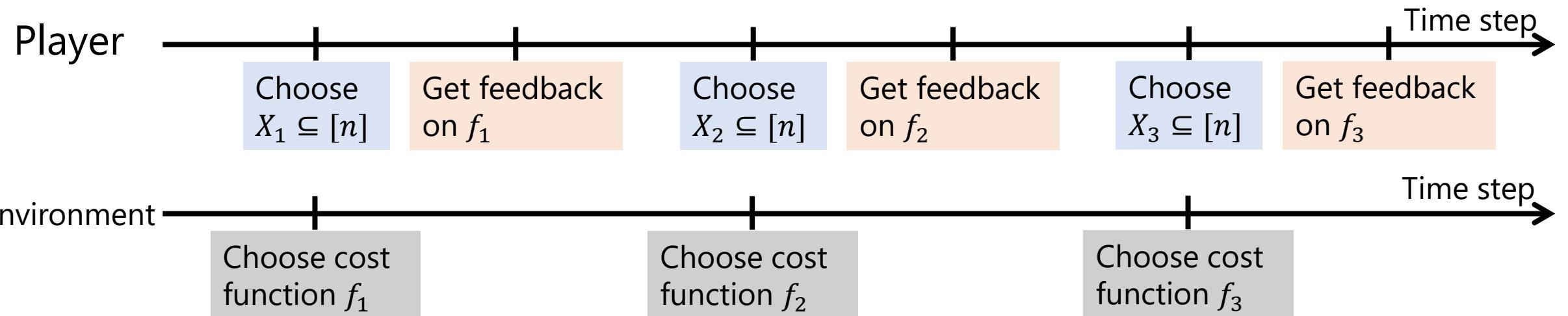


Revisiting Online Submodular Minimization: Gap-Dependent Regret Bounds, Best of Both Worlds and Adversarial Robustness

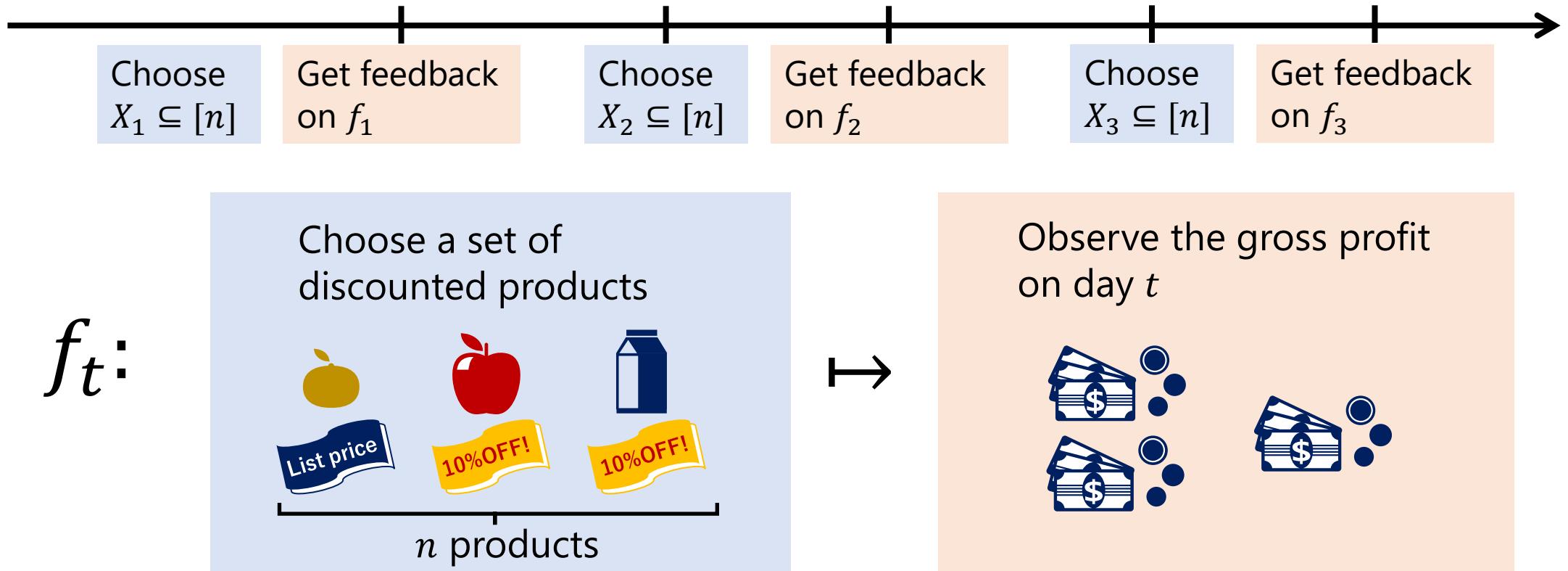
Shinji Ito (NEC Corporation)
ICML2022

Online submodular minimization [Hazan & Kale, 2012]

- Given ground set $[n] = \{1, 2, \dots, n\}$ is given
- For $t = 1, 2, \dots, T$:
 - The environment chooses *submodular cost function* $f_t: 2^{[n]} \rightarrow [0, 1]$
 - The player chooses *action* $X_t \subseteq [n]$ without knowing f_t
 - The player gets *feedback* on f_t *Full-info setting*: $f_t(X)$ for any $X \subseteq [n]$ is observable
Bandit setting: only $f_t(X_t)$ is observable



Application example: multi-product price optimization



Under some assumptions on the demand model (substitute-goods property), the objective function f_t is submodular (cf. [Ito & Fujimaki, 2016])

Performance metric: Regret

Algorithm performance is evaluated by means of *regret* R_T defined as

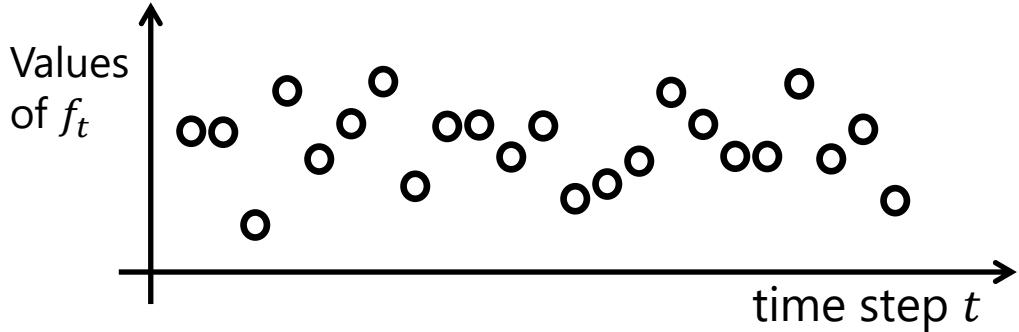
$$R_T = \mathbb{E} \left[\sum_{t=1}^T f_t(X_t) \right] - \min_{X^* \subseteq [n]} \mathbb{E} \left[\sum_{t=1}^T f_t(X^*) \right]$$

Cumulative costs incurred by **the player**

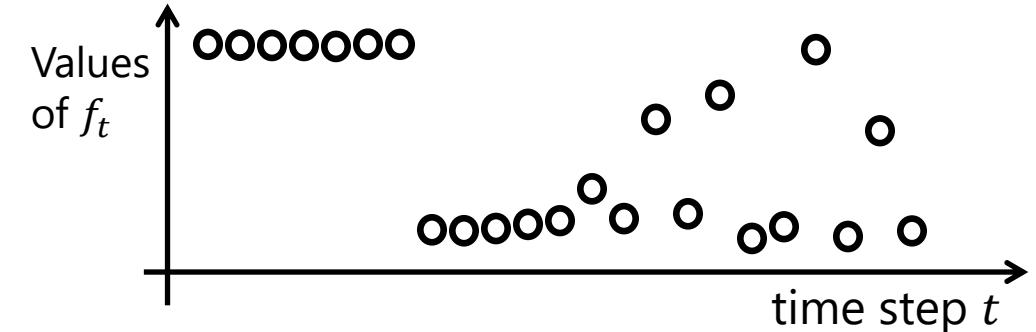
Cumulative costs for **the optimal fixed action X^***

Two models for environments

1. **Stochastic (stationary) model:**
cost functions f_t follow **i.i.d. distributions**

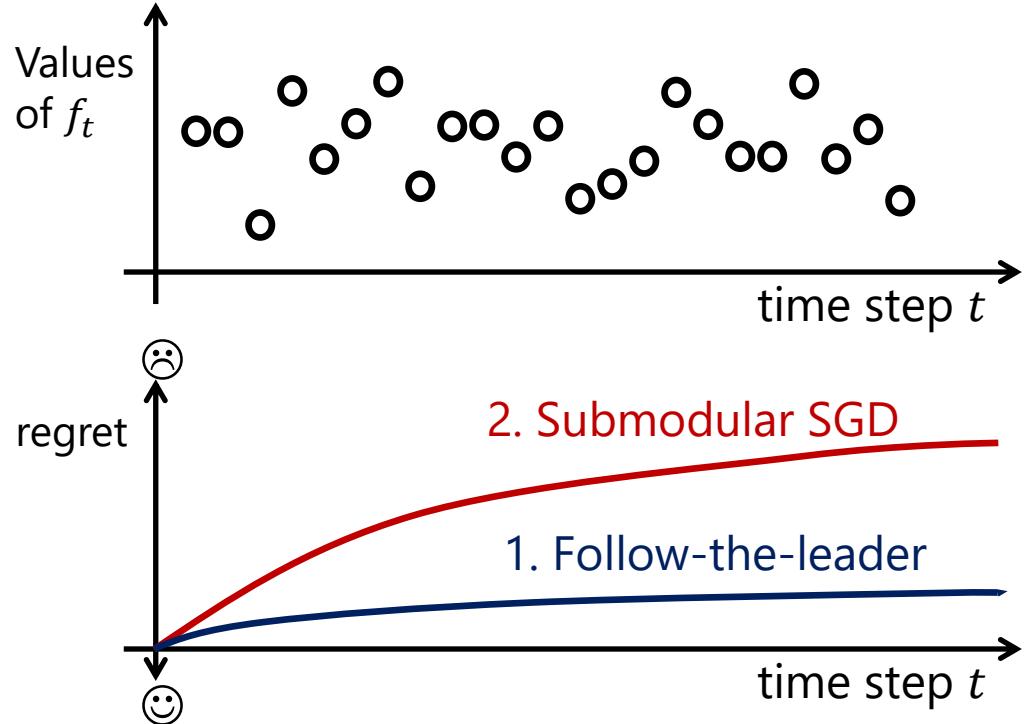


2. **Adversarial (non-stationary) model:**
 $\{f_t\}_{t=1}^T$ is an **arbitrary sequence**

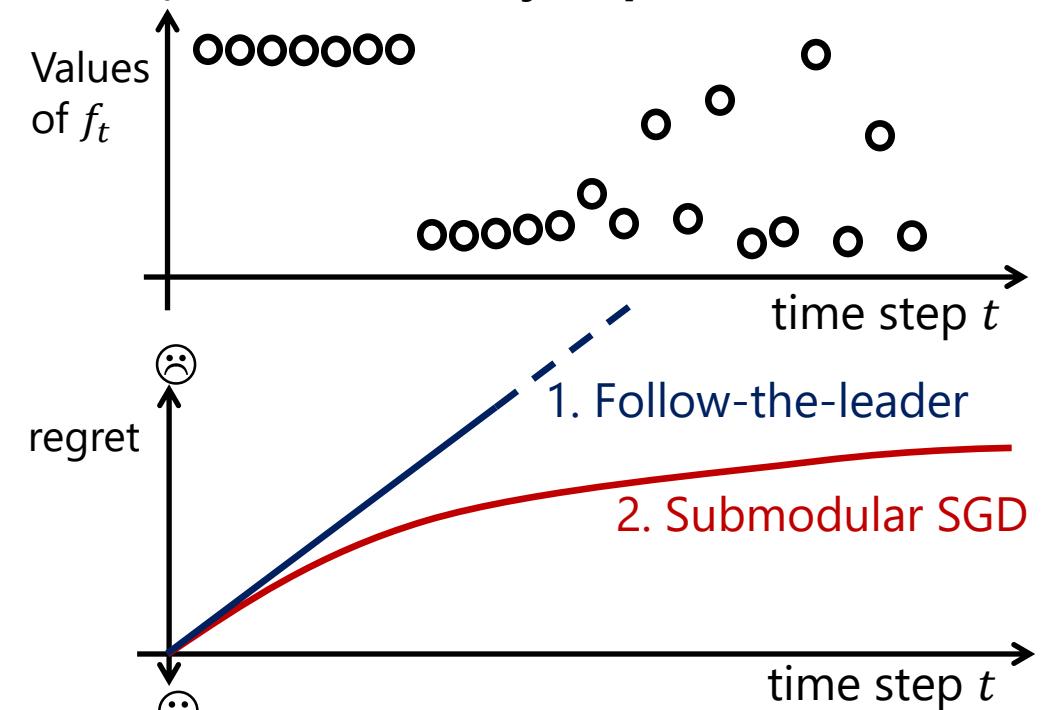


Two models for environments

1. **Stochastic (stationary) model:**
cost functions f_t follow **i.i.d. distributions**



2. **Adversarial (non-stationary) model:**
 $\{f_t\}_{t=1}^T$ is an **arbitrary sequence**

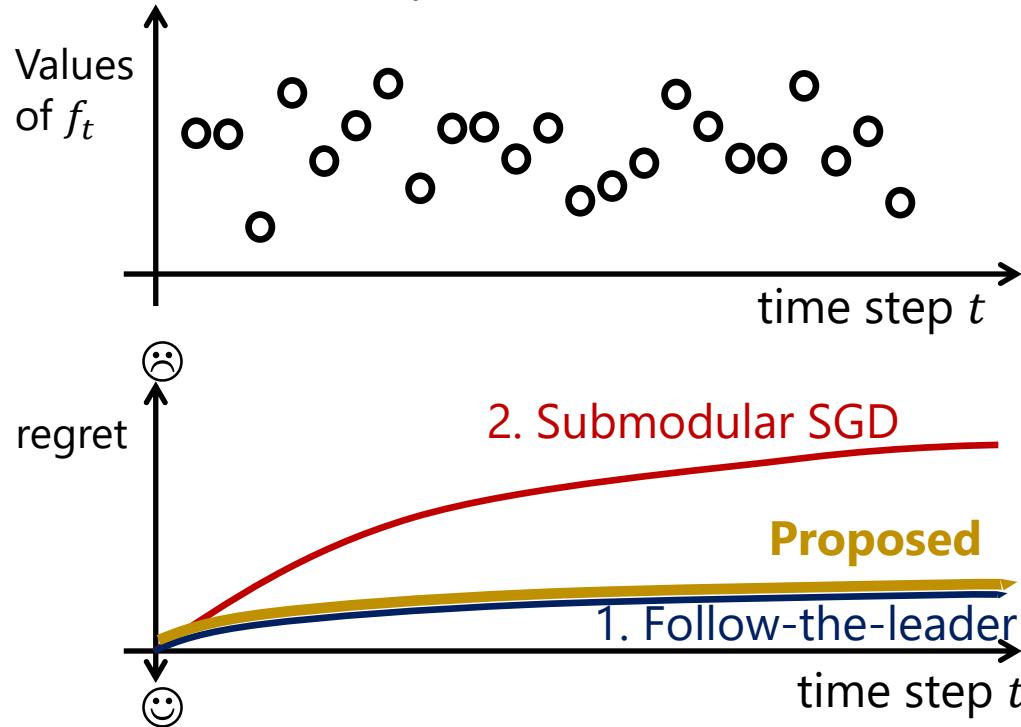


- It is important to choose **the right algorithm for the environment**.
- However, it is difficult to know in advance which algorithm better matches the environment.

Two models for environments

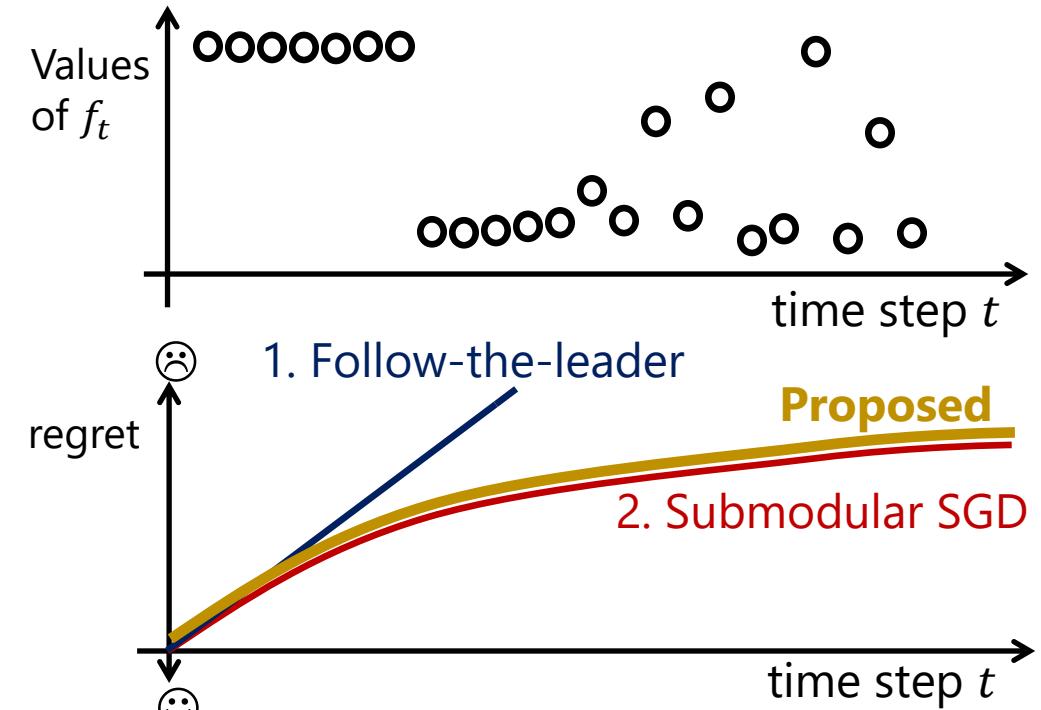
1. Stochastic (stationary) model:

cost functions f_t follow **i.i.d. distributions**



2. Adversarial (non-stationary) model:

$\{f_t\}_{t=1}^T$ is an **arbitrary sequence**



- It is important to choose **the right algorithm for the environment**.
- However, it is difficult to know in advance which algorithm better matches the environment.
- **This study: best-of-both-worlds** algorithms that work well for both models

Summary of contributions

Regret bounds for full-information settings. Δ : suboptimality gap, C : corruption level

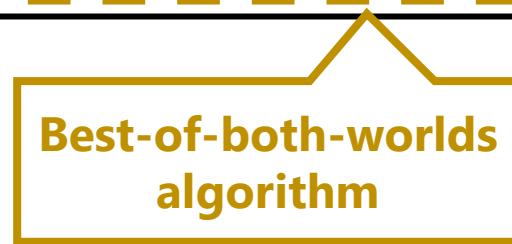
Algorithm	Stochastic	Adversarial	Stochastic + adversarial
Submodular SGD [Hazan&Kale, 2012]	$O(\sqrt{nT})$	$O(\sqrt{nT})$	$O(\sqrt{nT})$
Follow-the-leader	$O\left(\min\left\{\sqrt{nT}, \frac{n}{\Delta}\right\}\right)$	-	-
Proposed algo. 1 [This work]	$O\left(\min\left\{\sqrt{nT}, \frac{n}{\Delta}\right\}\right)$	$O(\sqrt{nT})$	$O\left(\min\left\{\sqrt{nT}, \frac{n}{\Delta} + \sqrt{\frac{cn}{\Delta}}\right\}\right)$

Summary of contributions

Regret bounds for full-information settings. Δ : suboptimality gap, C : corruption level

Algorithm	Stochastic	Adversarial	Stochastic + adversarial
Submodular SGD [Hazan&Kale, 2012]	$O(\sqrt{nT})$	$O(\sqrt{nT})$	$O(\sqrt{nT})$
Follow-the-leader	$O\left(\min\left\{\sqrt{nT}, \frac{n}{\Delta}\right\}\right)$	-	-
Proposed algo. 1 [This work]	$O\left(\min\left\{\sqrt{nT}, \frac{n}{\Delta}\right\}\right)$	$O(\sqrt{nT})$	$O\left(\min\left\{\sqrt{nT}, \frac{n}{\Delta} + \sqrt{\frac{cn}{\Delta}}\right\}\right)$

Best-of-both-worlds algorithm



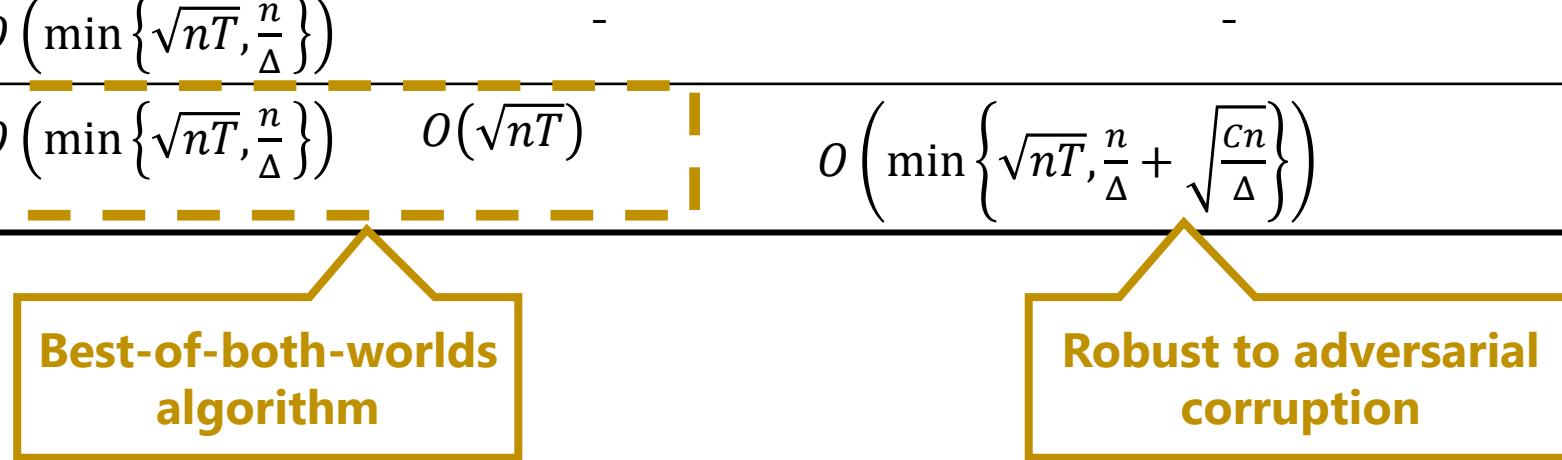
Summary of contributions

Regret bounds for full-information settings. Δ : suboptimality gap, C : corruption level

Algorithm	Stochastic	Adversarial	Stochastic + adversarial
Submodular SGD [Hazan&Kale, 2012]	$O(\sqrt{nT})$	$O(\sqrt{nT})$	$O(\sqrt{nT})$
Follow-the-leader	$O\left(\min\left\{\sqrt{nT}, \frac{n}{\Delta}\right\}\right)$	-	-
Proposed algo. 1 [This work]	$O\left(\min\left\{\sqrt{nT}, \frac{n}{\Delta}\right\}\right)$	$O(\sqrt{nT})$	$O\left(\min\left\{\sqrt{nT}, \frac{n}{\Delta} + \sqrt{\frac{cn}{\Delta}}\right\}\right)$

Best-of-both-worlds algorithm

Robust to adversarial corruption



Summary of contributions

Regret bounds for full-information settings. Δ : suboptimality gap, C : corruption level

Algorithm	Stochastic	Adversarial	Stochastic + adversarial
Submodular SGD [Hazan&Kale, 2012]	$O(\sqrt{nT})$	$O(\sqrt{nT})$	$O(\sqrt{nT})$
Follow-the-leader	$O\left(\min\left\{\sqrt{nT}, \frac{n}{\Delta}\right\}\right)$	-	-
Proposed algo. 1 [This work]	$O\left(\min\left\{\sqrt{nT}, \frac{n}{\Delta}\right\}\right)$	$O(\sqrt{nT})$	$O\left(\min\left\{\sqrt{nT}, \frac{n}{\Delta} + \sqrt{\frac{cn}{\Delta}}\right\}\right)$

Regret bounds for bandit-feedback settings.

Model	Stochastic	Adversarial	Stochastic + adversarial
Bandit submodular SGD [Hazan&Kale, 2012]	$O(nT^{2/3})$	$O(nT^{2/3})$	$O(nT^{2/3})$
Proposed algo. 1 [This work]	$\tilde{O}\left(\min\left\{nT^{2/3}, \frac{n^3}{\Delta^2}\right\}\right)$	$\tilde{O}(nT^{2/3})$	$\tilde{O}\left(\min\left\{nT^{2/3}, \frac{n^3}{\Delta^2} + \left(\frac{C^2 n^3}{\Delta^2}\right)^{1/3}\right\}\right)$