# Improving Mini-batch Optimal Transport via Partial Transportation

Khai Nguyen<sup>1\*</sup>, Dang Nguyen<sup>2\*</sup>, The-Anh Vu-Le<sup>2</sup>, Tung Pham<sup>2</sup>, Nhat Ho<sup>1</sup>

<sup>1</sup>Department of Statistics and Data Sciences, University of Texas at Austin
<sup>2</sup>VinAl Research





# **Optimal Transport**



## Mini-batch Optimal Transport

The number of supports is large? e.g., millions



Repeated computation? e.g., deep learning



- Impossible to store the cost matrix C in the computational graph
- ☐ Slow computation of OT losses which leads to slow training

# Mini-batch Optimal Transport



## Mini-batch Partial Optimal Transport



## Training deep networks with m-POT loss



Set  $\nabla_{\theta}^k = 0$ 

For i = 1 to k

Only one OT problem in memory at a time

Parallel training

Compute  $X_i(\theta), Y_i(\theta)$ 

Compute 
$$\nabla_{\theta}^{k} = \nabla_{\theta}^{k} + \frac{1}{k} \nabla_{\theta} POT^{s}(P_{X_{i}(\theta)}, P_{Y_{i}(\theta)})$$

Update  $oldsymbol{ heta}$  based on the stochastic gradient  $abla_{ heta}^k$ 

# Experiments on Deep Domain Adaptation

#### Adapting classification on digits datasets

| Method       | SVHN to MNIST                      | USPS to MNIST                      | MNIST to USPS                      | Avg   |
|--------------|------------------------------------|------------------------------------|------------------------------------|-------|
| DANN         | $95.80 \pm 0.29$                   | $94.71 \pm 0.12$                   | $91.63 \pm 0.53$                   | 94.05 |
| ALDA         | $98.81 \pm 0.08$                   | $98.29 \pm 0.07$                   | $95.29 \pm 0.16$                   | 97.46 |
| m-OT         | $94.18 \pm 0.32$                   | $96.71 \pm 0.24$                   | $86.93 \pm 1.16$                   | 92.60 |
| m-UOT        | $98.89 \pm 0.13$                   | $98.54 \pm 0.20$                   | $95.83 \pm 0.05$                   | 97.75 |
| m-POT (Ours) | $\textbf{98.98} \pm \textbf{0.08}$ | $\textbf{98.63} \pm \textbf{0.13}$ | $\textbf{96.04} \pm \textbf{0.02}$ | 97.88 |



# Experiments on Deep Domain Adaptation

#### Adapting classification on Office-Home datasets

| 22.2          |       |       |       |       | ~     | ~     |       |       |       |       |       |       | 27    |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Method        | A2C   | A2P   | A2R   | C2A   | C2P   | C2R   | P2A   | P2C   | P2R   | R2A   | R2C   | R2P   | Avg   |
| RESNET-50 (*) | 34.90 | 50.00 | 58.00 | 37.40 | 41.90 | 46.20 | 38.50 | 31.20 | 60.40 | 53.90 | 41.20 | 59.90 | 46.1  |
| DANN          | 47.92 | 67.08 | 74.85 | 53.80 | 63.47 | 66.42 | 52.99 | 44.35 | 74.43 | 65.53 | 52.96 | 79.41 | 61.93 |
| CDAN-E (*)    | 52.50 | 71.40 | 76.10 | 59.70 | 69.90 | 71.50 | 58.70 | 50.30 | 77.50 | 70.50 | 57.90 | 83.50 | 66.60 |
| ALDA          | 54.04 | 74.89 | 77.14 | 61.37 | 70.62 | 72.75 | 60.32 | 51.03 | 76.66 | 67.90 | 55.94 | 81.87 | 67.04 |
| ROT (*)       | 47.20 | 71.80 | 76.40 | 58.60 | 68.10 | 70.20 | 56.50 | 45.00 | 75.80 | 69.40 | 52.10 | 80.60 | 64.30 |
| m-OT          | 51.75 | 70.01 | 75.79 | 59.60 | 66.46 | 70.07 | 57.60 | 47.88 | 75.29 | 66.82 | 55.71 | 78.11 | 64.59 |
| m-UOT         | 54.99 | 74.45 | 80.78 | 65.66 | 74.93 | 74.91 | 64.70 | 53.42 | 80.01 | 74.58 | 59.88 | 83.73 | 70.17 |
| m-POT (Ours)  | 55.65 | 73.80 | 80.76 | 66.34 | 74.88 | 76.16 | 64.46 | 53.38 | 80.60 | 74.55 | 59.71 | 83.81 | 70.34 |
| TS-OT (Ours)  | 53.89 | 71.01 | 77.13 | 59.82 | 69.20 | 71.95 | 59.18 | 51.17 | 76.54 | 66.46 | 56.97 | 80.19 | 66.13 |
| TS-UOT (Ours) | 56.35 | 73.56 | 80.16 | 65.02 | 73.12 | 76.50 | 63.66 | 54.49 | 79.97 | 71.24 | 60.11 | 82.92 | 69.76 |
| TS-POT (Ours) | 57.06 | 76.13 | 81.53 | 68.44 | 72.82 | 76.53 | 66.21 | 54.87 | 80.39 | 75.57 | 60.50 | 84.31 | 71.20 |

| Method        | Accuracy                           |
|---------------|------------------------------------|
| DANN          | $67.63 \pm 0.34$                   |
| ALDA          | $71.22 \pm 0.12$                   |
| m-OT          | $62.42 \pm 0.12$                   |
| m-UOT         | $72.34 \pm 0.32$                   |
| m-POT (Ours)  | $73.59 \pm 0.15$                   |
| TS-OT (Ours)  | $69.14 \pm 0.72$                   |
| TS-UOT (Ours) | $70.91 \pm 0.11$                   |
| TS-POT (Ours) | $\textbf{75.96} \pm \textbf{0.44}$ |

Adapting classification on VISDA dataset

#### Conclusion

- Using partial optimal transport (POT) could alleviate misspecified matchings in mini-batch optimal transport:
  - Replacing OT by POT in mini-batch losses could improve the performance.

Two stage training is better than the conventional training when having two computational memories e.g., RAM and GPUs' memory.

- ☐ Future works
  - $\Box$  Develop algorithms to choose the fraction of masses S.

# Thank you for listening!

Khai Nguyen: khainb@utexas.edu @KhaiBaNguyen