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Background: Demanding Efficient ML 

● A growing demand: Accelerate deep neural 

networks (DNNs) on real-world devices

Bridge the Gap

Complex AI Models Computing Platforms 
with Limited Resources



Challenge: A Dilemma

● A dilemma between the trends of efficient DNN 

design vs. modern computing platform advances

Modern computing platforms: A higher 

degree of parallel computing [K. Rupp]

Efficient DNNs: Adopt Lightweight 

operators featuring low utilization
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Our Driven Question and Proposed Solution

How can we build efficient/compact DNNs with boosted 

hardware utilization to harvest more parallelized 

capability of modern hardware?
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We propose DepthShrinker:

➢ Shrinking consecutive operations into one single 

dense operation
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Motivating Real-device Profiling

● Goal: Validate the hw benefits of dense operators 

● Profiling setup
○ Replace each building block by one dense conv layer

○ Scale channel numbers to ensure the same FLOPs

● Considered devices: Desktop + Edge GPUs
○ NVIDIA Tesla V100 GPU

○ NVIDIA RTX 2080Ti GPU

○ Jetson TX2 Edge GPU



Motivating Real-device Profiling

● Compact models vs. their dense counterparts
○ Dense convs lead to higher throughputs

■ 3.45x ~ 4.38x on top of the MobileNetV2 family

■ 1.18x ~ 2.43x on top of the ResNet family

■ More notable on Desktop GPUs than Edge ones
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DepthShrinker: The Key Idea

● Key idea
○ Remove all the activation functions in one inverted 

residual block [CVPR2018, M. Sandler] and shrink it to one 

dense conv layer

We propose DepthShrinker:

➢ Shrinking consecutive operations into one single 

dense operation
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DepthShrinker: Research Questions

We propose DepthShrinker:

➢ Shrinking consecutive operations into one single 

dense operation

Two research questions to achieve DepthShrinker: 

➢ Which activation functions to remove?

➢ How to restore the accuracy after the removal?



DepthShrinker: Overview

● DepthShrinker: A three-stage framework



Identify Redundant Act Funcs

● Search method
○ Learnable binary masks on act funcs with L0 sparsity

● Learning scheme: Fully differentiable
○ Forward: Activate top k act funcs

○ Backward: Update both model weights and masks via STE



Identify Redundant Act Funcs

● Search method
○ Learnable binary masks on act funcs with L0 sparsity

● Other techniques in implementation
○ Block-wise shrink: Share m for all act funcs in one block

○ Latency-aware decay on m: Penalize the importance of 

latency-bottleneck blocks



Merge Consecutive Linear OPs

● One nice property during merging

○ The resulting conv layer is only determined by 

■ The number of the input channels in the first conv 

■ The number of output channels in the last conv

➢ DepthShrinker can shrink the wide intermediate layers  

within inverted residual blocks
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Experiment: Setup

● Models and datasets
○ MobileNetV2 families @ ImageNet

○ EfficientNet-Lite families @ ImageNet

● Considered devices: Desktop + Edge
○ NVIDIA Tesla V100 GPU

○ NVIDIA RTX 2080Ti GPU

○ Jetson TX2 Edge GPU

○ CPU devices: Google Pixel 3 / Raspberry Pi 4

● Metrics: Accuracy / Throughput (FPS)



Experiment: Benchmark with Pruning

● Benchmark with channel-wise pruning
○ Consistently better Acc-FPS trade-off



Experiment: Benchmark with Pruning

● Benchmark with channel-wise pruning
○ Better scalability to extremely efficient cases

■ A 3.06% higher acc with 1.53x FPS



Experiment: Benchmark with Pruning

● Benchmark with layer-wise pruning
○ Much better acc under large compression ratios

■ Shrinking is a soft version of “hard pruning”
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