

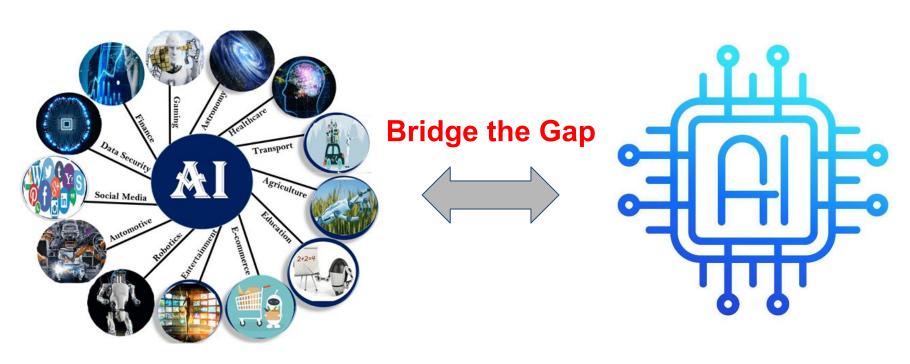
DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks

ICML 2022

Yonggan Fu, Haichuan Yang, Jiayi Yuan, Meng Li, Cheng Wan, Raghuraman Krishnamoorthi, Vikas Chandra, Yingyan Lin

Background: Demanding Efficient ML

 A growing demand: Accelerate deep neural networks (DNNs) on real-world devices

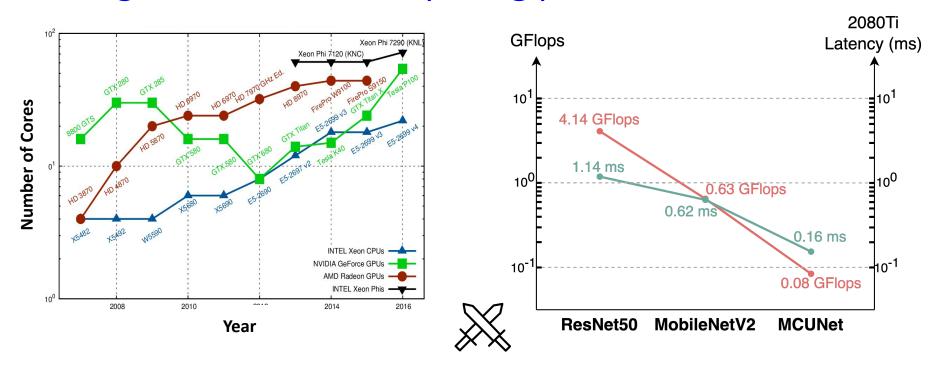


Complex Al Models

Computing Platformswith Limited Resources

Challenge: A Dilemma

 A dilemma between the trends of efficient DNN design vs. modern computing platform advances



Modern computing platforms: A higher degree of parallel computing [*K. Rupp*]

Efficient DNNs: Adopt Lightweight operators featuring low utilization

Our Driven Question and Proposed Solution

How can we build efficient/compact DNNs with boosted hardware utilization to harvest more parallelized capability of modern hardware?

Our Driven Question and Proposed Solution

How can we build efficient/compact DNNs with boosted hardware utilization to harvest more parallelized capability of modern hardware?

We propose *DepthShrinker*:

Shrinking consecutive operations into one single dense operation

Overview

- Background and Challenge
- Motivating Profiling
- The DepthShrinker Framework
- Experimental Results

Motivating Real-device Profiling

Goal: Validate the hw benefits of dense operators

Profiling setup

- Replace each building block by one dense conv layer
- Scale channel numbers to ensure the same FLOPs

- Considered devices: Desktop + Edge GPUs
 - NVIDIA Tesla V100 GPU
 - NVIDIA RTX 2080Ti GPU
 - Jetson TX2 Edge GPU

Motivating Real-device Profiling

Compact models vs. their dense counterparts

- Dense convs lead to higher throughputs
 - 3.45x ~ 4.38x on top of the MobileNetV2 family
 - 1.18x ~ 2.43x on top of the ResNet family
 - More notable on Desktop GPUs than Edge ones

Model	GFLOPs	Tesla Original	V100 GPU Dense	RTX 2080Ti GPU Original Dense		TX2 I Original	TX2 Edge GPU ginal Dense	
MobileNetV2	0.33	3088	12090 (†3.91×)	2364	9351 (†3.96×)	115	397 (†3.45×)	
MobileNetV2-1.4	0.63	2127	8846 (†4.16×)	1617	6869 (†4.25×)	73	267 (†3.66×)	
Efficientnet-Lite0	0.41	2731	11174 (†4.09×)	2185	9577 (†4.38×)	98	360 (†3.67×)	
ResNet-50	4.14	1079	2182 (†2.02×)	874	1862 (†2.13×)	45	53 (†1.18×)	
ResNet-101	7.88	642	1509 (†2.35×)	538	1279 (†2.38×)	28	44 (†1.57×)	
ResNet-152	11.62	449	1082 (†2.41×)	378	917 (†2.43×)	19	30 (†1.58×)	

Overview

- Background and Challenge
- Motivating Profiling
- The DepthShrinker Framework
- Experimental Results

DepthShrinker: The Key Idea

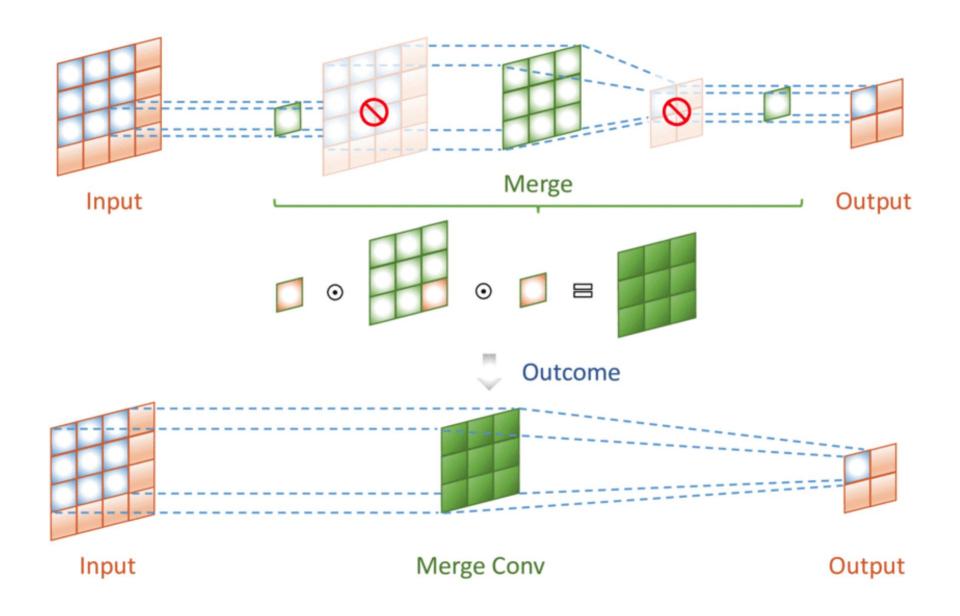
Key idea

 Remove all the activation functions in one inverted residual block [CVPR2018, M. Sandler] and shrink it to one dense

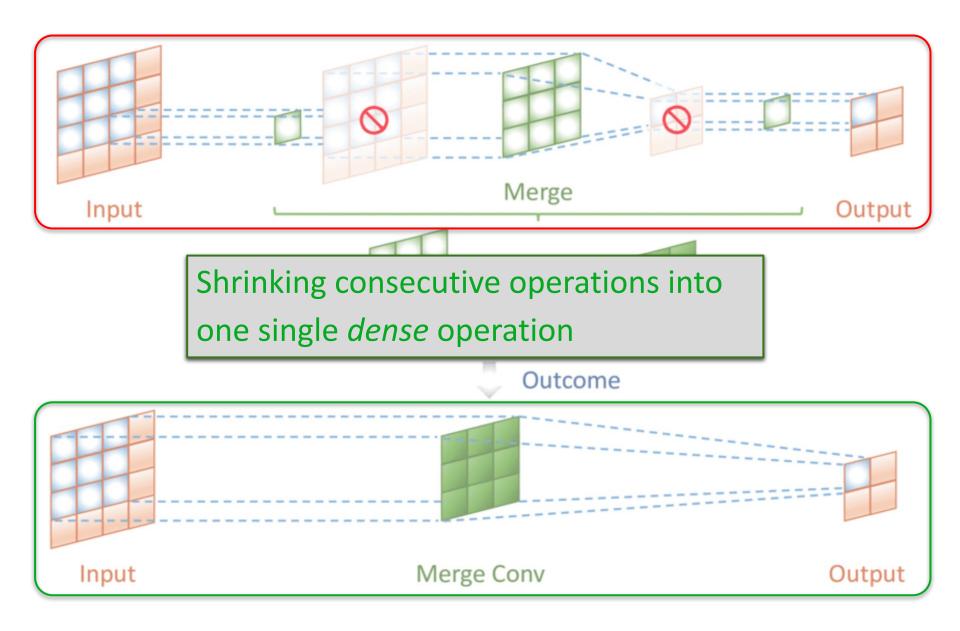
We propose **DepthShrinker**:

Shrinking consecutive operations into one single dense operation

DepthShrinker: The Key Idea



DepthShrinker: The Key Idea



DepthShrinker: Research Questions

We propose **DepthShrinker**:

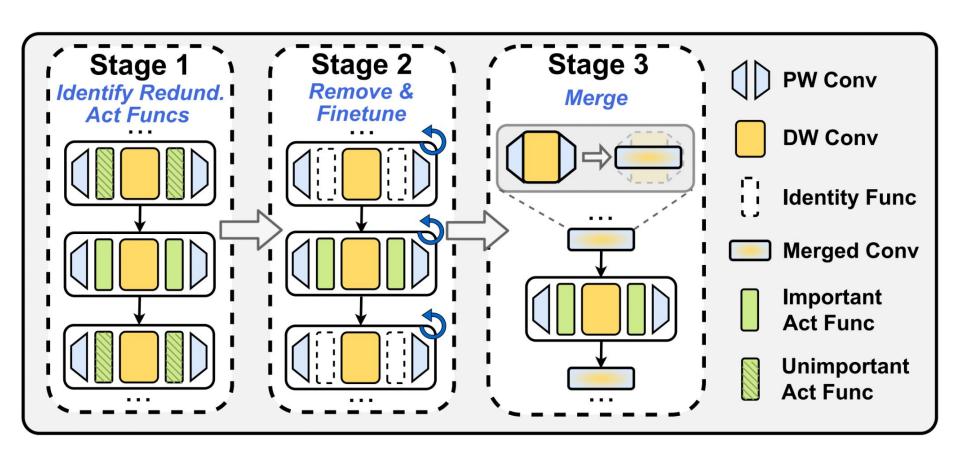
Shrinking consecutive operations into one single dense operation

Two research questions to achieve **DepthShrinker**:

- Which activation functions to remove?
- How to restore the accuracy after the removal?

DepthShrinker: Overview

DepthShrinker: A three-stage framework



Identify Redundant Act Funcs

Search method

Learnable binary masks on act funcs with LO sparsity

$$\underset{\theta,m}{\operatorname{arg\,min}} \sum_{i} \ell(\hat{y}_{\theta,m}(x_i), y_i) \quad \text{s.t.} \quad ||m||_0 \leqslant k$$

- Learning scheme: Fully differentiable
 - Forward: Activate top k act funcs
 - Backward: Update both model weights and masks via STE

Identify Redundant Act Funcs

Search method

Learnable binary masks on act funcs with LO sparsity

$$\underset{\theta,m}{\operatorname{arg\,min}} \sum_{i} \ell(\hat{y}_{\theta,m}(x_i), y_i) \quad \text{s.t.} \quad ||m||_0 \leqslant k$$

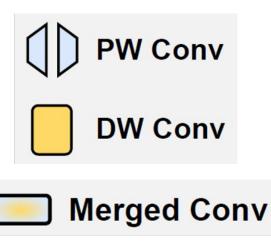
Other techniques in implementation

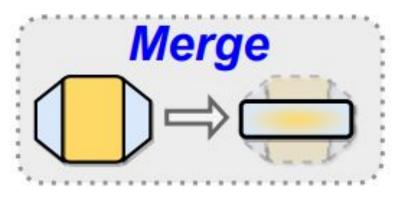
- Block-wise shrink: Share m for all act funcs in one block
- Latency-aware decay on m: Penalize the importance of latency-bottleneck blocks

Merge Consecutive Linear OPs

One nice property during merging

- The resulting conv layer is only determined by
 - The number of the input channels in the first conv
 - The number of output channels in the last conv
- DepthShrinker can shrink the wide intermediate layers within inverted residual blocks





Overview

- Background and Challenge
- Motivating Profiling
- The DepthShrinker Framework
- Experimental Results

Experiment: Setup

- Models and datasets
 - MobileNetV2 families @ ImageNet
 - EfficientNet-Lite families @ ImageNet
- Considered devices: Desktop + Edge
 - NVIDIA Tesla V100 GPU
 - NVIDIA RTX 2080Ti GPU
 - Jetson TX2 Edge GPU
 - CPU devices: Google Pixel 3 / Raspberry Pi 4
- Metrics: Accuracy / Throughput (FPS)

Experiment: Benchmark with Pruning

Benchmark with channel-wise pruning

Consistently better Acc-FPS trade-off

Model	Acc (%)	MFLOPs	Tesla V100	RTX 2080Ti	TX2
MBV2-1.4	75.30	630	2127 (†1.00×)	1617 (†1.00×)	73 (†1.00×)
MetaPruning-1.0×	73.20	332	3159 (†1.49×)	2527 (†1.56×)	115 (†1.58×)
MBV2-1.4-DS-A	74.65/75.29/75.65	519	3827 (†1.80×)	2881 (†1.78×)	134 (†1.84×)
MBV2-1.4-DS-B	73.67/74.8/75.13	502	4778 (↑2.25×)	3356 (†2.08×)	163 (†2.23×)
MBV2-1.4-DS-C	73.38/74.55/74.91	492	4597 (↑2.16×)	3537 (†2.19×)	159 (†2.18×)
Uniform-0.65×	67.20	182	4004 (†1.88×)	3147 (†1.95×)	161 (†2.21×)
MetaPruning-0.65×	71.70	160	4336 (↑2.04×)	3691 (†2.28×)	179 (†2.45×)
MBV2-1.4-DS-D	72.51/73.93/74.50	484	5560 (†2.61×)	3926 (†2.43×)	184 (†2.52×)
MBV2-1.4-DS-E	72.20/73.85/74.43	474	5317 (†2.50×)	4175 (†2.58×)	179 (†2.45×)
Uniform-0.35×	54.60	68	6266 (†2.95×)	5607 (†3.47×)	263 (†3.60×)
MetaPruning-0.35×	64.50	52	7044 (†3.31×)	6938 (†4.29×)	377 (↑5.16×)
MBV2-1.4-DS-F	67.56/69.04/70.13	415	10804 (†5.08×)	7687 (†4.75×)	344 (↑4.71×)

Experiment: Benchmark with Pruning

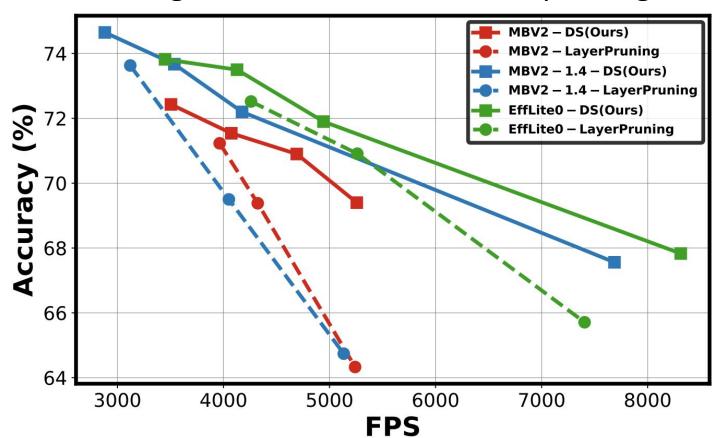
Benchmark with channel-wise pruning

- Better scalability to extremely efficient cases
 - A 3.06% higher acc with 1.53x FPS

Model	Acc (%)	MFLOPs	Tesla V100	RTX 2080Ti	TX2
MBV2-1.4	75.30	630	2127 (†1.00×)	1617 (†1.00×)	73 (†1.00×)
MetaPruning-1.0×	73.20	332	3159 (†1.49×)	2527 (†1.56×)	115 (†1.58×)
MBV2-1.4-DS-A	74.65/75.29/75.65	519	3827 (†1.80×)	2881 (†1.78×)	134 (†1.84×)
MBV2-1.4-DS-B	73.67/74.8/75.13	502	4778 (†2.25×)	3356 (†2.08×)	163 (†2.23×)
MBV2-1.4-DS-C	73.38/74.55/74.91	492	4597 (†2.16×)	3537 (†2.19×)	159 (†2.18×)
Uniform-0.65×	67.20	182	4004 (†1.88×)	3147 (†1.95×)	161 (†2.21×)
MetaPruning-0.65×	71.70	160	4336 (↑2.04×)	3691 (†2.28×)	179 (†2.45×)
MBV2-1.4-DS-D	72.51/73.93/74.50	484	5560 (†2.61×)	3926 (†2.43×)	184 (†2.52×)
MBV2-1.4-DS-E	72.20/73.85/74.43	474	5317 (↑2.50×)	4175 (†2.58×)	179 (†2.45×)
Uniform-0.35×	54.60	68	6266 (†2.95×)	5607 (†3.47×)	263 (†3.60×)
MetaPruning-0.35×	64.50	52	7044 (†3.31×)	6938 (†4.29×)	377 (↑5.16×)
MBV2-1.4-DS-F	67.56/69.04/70.13	415	$10804 (\uparrow 5.08 \times)$	7687 (†4.75×)	344 (†4.71×)

Experiment: Benchmark with Pruning

- Benchmark with layer-wise pruning
 - Much better acc under large compression ratios
 - Shrinking is a soft version of "hard pruning"



DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks

ICML 2022

The work is supported by the National Science Foundation (NSF) through the SCH program, the NeTS program, and the MLWiNS program.

