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Convex optimization & Nesterov acceleration

For convex optimization problems

min f(z),

Nesterov’s accelerated gradient (NAG) is one of the fastest first-order
method.

Table: Iteration complexities.?

convex | u-strongly convex

NAG | O(y/£) | o(y/E10gE)

1The required number of iterations to obtain an e-approximate solution
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Convex optimization on Riemannian manifolds

Geodesically convex (g-convex) optimization problem:

o f(z),

where
e M: Riemannian manifold (e.g., R™, sphere, hyperbolic space)
@ N: geodesically convex set

@ f: geodesically convex function.

Q) Is there an algorithm that converges as fast as NAG? J
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Acceleration on Riemannian manifolds?

Q) Is there an algorithm that converges as fast as NAG? J

Some recent papers...

(Liu et al., 2017): not computationally tractable.
(Zhang & Sra, 2018): locally accelerated.
@ (Ahn & Sra, 2020): globally, but eventually accelerated.

@ (Alimisis et al., 2021): accelerated only in early stages.

(Martinez-Rubio, 2022): fully accelerated, but they only consider the
manifolds with constant sectional curvature.

Open problem: to achieve full acceleration in general )
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Our contributions

Q) Is there an algorithm that converges as fast as NAG? |

@ We propose Riemannian NAG (RNAG):
new Riemannian optimization algorithm.

@ Our algorithm always achieves full acceleration.

Standard assumptions

@ The sectional curvature is bounded by K, and Kpax.
@ The diameter diam (V) of the domain is bounded above by D.

Note: these assumptions are common in the literature.
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-
Proposed algorithm: RNAG

Original NAG RNAG (ours)
Yk = Tk + TkUk Y = expy, (TkUk)
Tpp1 = Yk + (—aggrad f (yr))  Trer = expy, (—axgrad f (yr))
vk = U — (Yx — Tk) vp =T (v, — log,, (yk))
U1 = Brvr — v grad f (yx) V11 = Brvr — v grad f (yr)
Ukt1 = Upt1 — (Trt1 — Yk) Vg1 = Fyk (Uk+1 — log,, ($k+1))
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N
From NAG to RNAG

Original NAG RNAG (ours)
Yk = Tk + Tk Yr = exp,, (Tr0k)
Tpr1 =Yk + (—og grad f (yx)) Try1 = exp,, (—aggrad f (yx))
v = U — (Yp—k) vp =T (v — log,, (y))
Vg1 = Brvr — Yk grad f (yr) Vg1 = Brvr — vk grad f (yx)
Up+1 = V1 — (Tht1—Yk) Upp1 = Dyt ™ (Opgr — log,, (zr41))

Moadifications:
@ Addition & Subtraction — Exponential map & Logarithm map

@ Parallel transport
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N
From NAG to RNAG

Original NAG RNAG (ours)
Yk = Tk + TLUE Y = expy, (Tx0k)
Tei1 =Yg + (—ag grad f () Try1 = exp,, (—aggrad f (yx))
vk = O — (Yx — T) v =T (Uk —log,, ( k))
V1 = Brvr — Yk grad f (yr) Vg1 = Brvr — vk grad f (yx)
Uk41 = Uk41 — (Tht1 — Yk) U1 =Ly (U1 — log,, (Th41))

Modifications:
o Addition & Subtraction — Exponential map & Logarithm map

@ Parallel transport
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Main results

Theorem (Convergence of RNAG, g-convex case)

When f is geodesically convex and L-smooth, RNAG (with some
parameters) finds an e-approximate solution in O 5\/% iterations,

where £ is a constant depending on the bounds Kpin, Kmax, and D.

Table: Iteration complexities.

convex | p-strongly convex
NAG o(yE) | o(y/Elst)
RNAG (ours) O(g\ﬁ)

o

™
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Main results

Theorem (Convergence of RNAG, g-strongly convex case)

When f is geodesically ji-strongly convex and L-smooth, RNAG (with
some parameters) finds an e-approximate solution in O (£ ﬁ log %)

iterations, where £ is a constant depending on the bounds K,i,,, Kmax,
and D.

Table: Iteration complexities.

convex | p-strongly convex

NAG o(y/£) | ofy/Eigt)

RNAG (ours) 0<§ é) O(q/%log%)
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|deas of proof

Q) Follows original proof.. What modificaitons do we need? J

@ Parameters: depending on Ky, Kpax, D

Yr = exp,, (TkUk)
Tpi1 = expy, (—akgrad f (yx))
v = TY (v, — log,, (yx))
Upy1 = Brvr — ve grad f (yr)

Upgr = Dt (Dpgr — log,, (zx41))

@ Potential function
2

O = Ax (F () — £ () + By (|| — log,, )|, + (6 = 1) oll2,)

Squared distances in Ty, M

@ Novel metric distortion lemma
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Continuous-time interpretation

Taking the step size s — 0,
@ RNAG-C converges to the following ODE:

1+2¢

VX + X + grad f(X) = 0.

@ RNAG-SC converges to the following ODE:

1

VX+<\/E+\/E> ViX + grad f(X) = 0.

@ These ODEs correspond to those in (Alimisis et al., 2020) for
modeling Riemannian acceleration.

@ This analysis confirms the accelerated convergence of our algorithms
through the lens of continuous-time flows.

12/14



Numerical experiment: Karcher mean of SPD matrices
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@ RAGDsDR: known accelerated method for g-convex functions.
@ RAGD: known accelerated method for strongly g-convex functions.

(Note: full acceleration is not guaranteed for RAGDsDR and RAGD)
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Concluding remark

Contributions

We proposed RNAG, the first Riemannian optimization algorithm
achieving full acceleration.

Open questions

Effect of geometry (e.g., sectional curvature) on lower complexity bounds.

convex pu-strongly convex

NAG | o(y/E) | of/Frst)
RNAG (ours) 0(5 %) O(f\/%log%)
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