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Convex optimization & Nesterov acceleration

For convex optimization problems

min
x∈Rn

f(x),

Nesterov’s accelerated gradient (NAG) is one of the fastest first-order
method.

Table: Iteration complexities.1

convex µ-strongly convex

NAG O
(√

L
ϵ

)
O
(√

L
µ log L

ϵ

)

1The required number of iterations to obtain an ϵ-approximate solution
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Convex optimization on Riemannian manifolds

Geodesically convex (g-convex) optimization problem:

min
x∈N⊆M

f(x),

where

M : Riemannian manifold (e.g., Rn, sphere, hyperbolic space)

N : geodesically convex set

f : geodesically convex function.

Q) Is there an algorithm that converges as fast as NAG?
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Acceleration on Riemannian manifolds?

Q) Is there an algorithm that converges as fast as NAG?

Some recent papers...

(Liu et al., 2017): not computationally tractable.

(Zhang & Sra, 2018): locally accelerated.

(Ahn & Sra, 2020): globally, but eventually accelerated.

(Alimisis et al., 2021): accelerated only in early stages.

(Mart́ınez-Rubio, 2022): fully accelerated, but they only consider the
manifolds with constant sectional curvature.

Open problem: to achieve full acceleration in general
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Our contributions

Q) Is there an algorithm that converges as fast as NAG?

We propose Riemannian NAG (RNAG):
new Riemannian optimization algorithm.

Our algorithm always achieves full acceleration.

Standard assumptions

The sectional curvature is bounded by Kmin and Kmax.

The diameter diam(N) of the domain is bounded above by D.

Note: these assumptions are common in the literature.
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Proposed algorithm: RNAG

Original NAG RNAG (ours)

yk = xk + τkv̄k

xk+1 = yk + (−αk grad f (yk))

vk = v̄k − (yk − xk)

¯̄vk+1 = βkvk − γk grad f (yk)

v̄k+1 = ¯̄vk+1 − (xk+1 − yk)

yk = expxk
(τkv̄k)

xk+1 = expyk (−αk grad f (yk))

vk = Γyk
xk

(
v̄k − logxk

(yk)
)

¯̄vk+1 = βkvk − γk grad f (yk)

v̄k+1 = Γ
xk+1
yk

(
¯̄vk+1 − logyk (xk+1)

)
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From NAG to RNAG

Original NAG RNAG (ours)

yk = xk + τkv̄k

xk+1 = yk + (−αk grad f (yk))

vk = v̄k − (yk−xk)

¯̄vk+1 = βkvk − γk grad f (yk)

v̄k+1 = ¯̄vk+1 − (xk+1−yk)

yk = expxk
(τkv̄k)

xk+1 = expyk (−αk grad f (yk))

vk = Γyk
xk

(
v̄k − logxk

(yk)
)

¯̄vk+1 = βkvk − γk grad f (yk)

v̄k+1 = Γ
xk+1
yk

(
¯̄vk+1 − logyk (xk+1)

)
Modifications:

Addition & Subtraction → Exponential map & Logarithm map

Parallel transport
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Main results

Theorem (Convergence of RNAG, g-convex case)

When f is geodesically convex and L-smooth, RNAG (with some

parameters) finds an ϵ-approximate solution in O

(
ξ
√

L
ϵ

)
iterations,

where ξ is a constant depending on the bounds Kmin, Kmax, and D.

Table: Iteration complexities.

convex µ-strongly convex

NAG O
(√

L
ϵ

)
O
(√

L
µ log L

ϵ

)
RNAG (ours) O

(
ξ
√

L
ϵ

)
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Ideas of proof

Q) Follows original proof.. What modificaitons do we need?

Parameters: depending on Kmin, Kmax, D

yk = expxk
(τkv̄k)

xk+1 = expyk
(−αk grad f (yk))

vk = Γyk
xk

(
v̄k − logxk

(yk)
)

¯̄vk+1 = βkvk − γk grad f (yk)

v̄k+1 = Γxk+1
yk

(
¯̄vk+1 − logyk

(xk+1)
)

Potential function

ϕk = Ak (f (xk)− f (x∗)) +Bk

(∥∥v̄k − logxk
(x∗)

∥∥2
xk

+ (ξ − 1)∥v̄k∥2
xk

)
︸ ︷︷ ︸

Squared distances in Txk
M

Novel metric distortion lemma
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Continuous-time interpretation

Taking the step size s → 0,

RNAG-C converges to the following ODE:

∇Ẋ +
1 + 2ξ

t
Ẋ + grad f(X) = 0.

RNAG-SC converges to the following ODE:

∇Ẋ +

(
1√
ξ
+
√

ξ

)√
µẊ + grad f(X) = 0.

These ODEs correspond to those in (Alimisis et al., 2020) for
modeling Riemannian acceleration.

This analysis confirms the accelerated convergence of our algorithms
through the lens of continuous-time flows.
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Numerical experiment: Karcher mean of SPD matrices

100 101 102

Iterations
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k
)
−
f
(x

∗ )

RGD

RAGDsDR

RAGD (Zhang and Sra)

RNAG-C

RNAG-SC

RAGDsDR: known accelerated method for g-convex functions.

RAGD: known accelerated method for strongly g-convex functions.

(Note: full acceleration is not guaranteed for RAGDsDR and RAGD)
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Concluding remark

Contributions

We proposed RNAG, the first Riemannian optimization algorithm
achieving full acceleration.

Open questions

Effect of geometry (e.g., sectional curvature) on lower complexity bounds.

convex µ-strongly convex

NAG O
(√

L
ϵ

)
O
(√

L
µ log L

ϵ

)
RNAG (ours) O

(
ξ
√

L
ϵ

)
O
(
ξ
√

L
µ log L

ϵ

)
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