# Accelerated Gradient Methods for Geodesically Convex Optimization

Tractable Algorithms and Convergence Analysis

### Jungbin Kim Insoon Yang

Department of Electrical and Computer Engineering Seoul National University

ICML 2022

## Convex optimization & Nesterov acceleration

For convex optimization problems

 $\min_{x\in\mathbb{R}^n}f(x),$ 

**Nesterov's accelerated gradient (NAG)** is one of the fastest first-order method.

Table: Iteration complexities.<sup>1</sup>

|     | convex                                    | $\mu$ -strongly convex                                       |
|-----|-------------------------------------------|--------------------------------------------------------------|
| NAG | $O\left(\sqrt{\frac{L}{\epsilon}}\right)$ | $O\left(\sqrt{\frac{L}{\mu}}\log{\frac{L}{\epsilon}}\right)$ |

<sup>&</sup>lt;sup>1</sup>The required number of iterations to obtain an  $\epsilon$ -approximate solution

## Convex optimization on Riemannian manifolds

### Geodesically convex (g-convex) optimization problem:

 $\min_{x \in N \subseteq M} f(x),$ 

where

- M: Riemannian manifold (e.g.,  $\mathbb{R}^n$ , sphere, hyperbolic space)
- N: geodesically convex set
- *f*: geodesically convex function.

Q) Is there an algorithm that converges as fast as NAG?

## Acceleration on Riemannian manifolds?

Q) Is there an algorithm that converges as fast as NAG?

Some recent papers...

- (Liu et al., 2017): not computationally tractable.
- (Zhang & Sra, 2018): locally accelerated.
- (Ahn & Sra, 2020): globally, but eventually accelerated.
- (Alimisis et al., 2021): accelerated only in early stages.
- (Martínez-Rubio, 2022): fully accelerated, but they only consider the manifolds with constant sectional curvature.

#### Open problem: to achieve full acceleration in general

## Our contributions

Q) Is there an algorithm that converges as fast as NAG?

- We propose Riemannian NAG (**RNAG**): new Riemannian optimization algorithm.
- Our algorithm always achieves full acceleration.

#### Standard assumptions

- The sectional curvature is bounded by  $K_{\min}$  and  $K_{\max}$ .
- The diameter  $\operatorname{diam}(N)$  of the domain is bounded above by D.

Note: these assumptions are common in the literature.

# Proposed algorithm: RNAG

### Original NAG

$$y_k = x_k + \tau_k \bar{v}_k$$
  

$$x_{k+1} = y_k + (-\alpha_k \operatorname{grad} f(y_k))$$
  

$$v_k = \bar{v}_k - (y_k - x_k)$$
  

$$\bar{\bar{v}}_{k+1} = \beta_k v_k - \gamma_k \operatorname{grad} f(y_k)$$
  

$$\bar{v}_{k+1} = \bar{\bar{v}}_{k+1} - (x_{k+1} - y_k)$$

### RNAG (ours)

$$y_{k} = \exp_{x_{k}} (\tau_{k} \bar{v}_{k})$$

$$x_{k+1} = \exp_{y_{k}} (-\alpha_{k} \operatorname{grad} f(y_{k}))$$

$$v_{k} = \Gamma_{x_{k}}^{y_{k}} (\bar{v}_{k} - \log_{x_{k}} (y_{k}))$$

$$\bar{\bar{v}}_{k+1} = \beta_{k} v_{k} - \gamma_{k} \operatorname{grad} f(y_{k})$$

$$\bar{v}_{k+1} = \Gamma_{y_{k}}^{x_{k+1}} (\bar{\bar{v}}_{k+1} - \log_{y_{k}} (x_{k+1}))$$





## From NAG to RNAG

#### Original NAG

$$y_k = x_k + \tau_k \bar{v}_k$$
  

$$x_{k+1} = y_k + (-\alpha_k \operatorname{grad} f(y_k))$$
  

$$v_k = \bar{v}_k - (y_k - x_k)$$
  

$$\bar{\bar{v}}_{k+1} = \beta_k v_k - \gamma_k \operatorname{grad} f(y_k)$$
  

$$\bar{v}_{k+1} = \bar{\bar{v}}_{k+1} - (x_{k+1} - y_k)$$

### RNAG (ours)

$$y_{k} = \exp_{x_{k}} (\tau_{k} \bar{v}_{k})$$

$$x_{k+1} = \exp_{y_{k}} (-\alpha_{k} \operatorname{grad} f(y_{k}))$$

$$v_{k} = \Gamma_{x_{k}}^{y_{k}} (\bar{v}_{k} - \log_{x_{k}} (y_{k}))$$

$$\bar{\bar{v}}_{k+1} = \beta_{k} v_{k} - \gamma_{k} \operatorname{grad} f(y_{k})$$

$$\bar{\bar{v}}_{k+1} = \Gamma_{y_{k}}^{x_{k+1}} (\bar{\bar{v}}_{k+1} - \log_{y_{k}} (x_{k+1}))$$

### **Modifications:**

- $\bullet$  Addition & Subtraction  $\rightarrow$  Exponential map & Logarithm map
- Parallel transport

## From NAG to RNAG

#### Original NAG

$$y_k = x_k + \tau_k \bar{v}_k$$
$$x_{k+1} = y_k + (-\alpha_k \operatorname{grad} f(y_k))$$
$$v_k = \bar{v}_k - (y_k - x_k)$$
$$\bar{\bar{v}}_{k+1} = \beta_k v_k - \gamma_k \operatorname{grad} f(y_k)$$
$$\bar{v}_{k+1} = \bar{\bar{v}}_{k+1} - (x_{k+1} - y_k)$$

### RNAG (ours)

$$y_{k} = \exp_{x_{k}} (\tau_{k} \bar{v}_{k})$$

$$x_{k+1} = \exp_{y_{k}} (-\alpha_{k} \operatorname{grad} f(y_{k}))$$

$$v_{k} = \frac{\Gamma_{x_{k}}^{y_{k}}}{x_{k}} (\bar{v}_{k} - \log_{x_{k}} (y_{k}))$$

$$\bar{\bar{v}}_{k+1} = \beta_{k} v_{k} - \gamma_{k} \operatorname{grad} f(y_{k})$$

$$\bar{v}_{k+1} = \frac{\Gamma_{y_{k}}^{x_{k+1}}}{y_{k}} (\bar{\bar{v}}_{k+1} - \log_{y_{k}} (x_{k+1}))$$

### **Modifications:**

- $\bullet$  Addition & Subtraction  $\rightarrow$  Exponential map & Logarithm map
- Parallel transport

## Main results

#### Theorem (Convergence of RNAG, g-convex case)

When f is geodesically convex and L-smooth, RNAG (with some parameters) finds an  $\epsilon$ -approximate solution in  $O\left(\xi\sqrt{\frac{L}{\epsilon}}\right)$  iterations, where  $\xi$  is a constant depending on the bounds  $K_{\min}$ ,  $K_{\max}$ , and D.

#### Table: Iteration complexities.

|             | convex                                       | $\mu$ -strongly convex                                       |
|-------------|----------------------------------------------|--------------------------------------------------------------|
| NAG         | $O\left(\sqrt{\frac{L}{\epsilon}}\right)$    | $O\left(\sqrt{\frac{L}{\mu}}\log{\frac{L}{\epsilon}}\right)$ |
| RNAG (ours) | $O\left(\xi\sqrt{\frac{L}{\epsilon}}\right)$ |                                                              |

## Main results

#### Theorem (Convergence of RNAG, g-strongly convex case)

When f is geodesically  $\mu$ -strongly convex and L-smooth, RNAG (with some parameters) finds an  $\epsilon$ -approximate solution in  $O\left(\xi\sqrt{\frac{L}{\mu}}\log\frac{L}{\epsilon}\right)$  iterations, where  $\xi$  is a constant depending on the bounds  $K_{\min}$ ,  $K_{\max}$ , and D.

#### Table: Iteration complexities.

|             | convex                                       | $\mu$ -strongly convex                                          |
|-------------|----------------------------------------------|-----------------------------------------------------------------|
| NAG         | $O\left(\sqrt{\frac{L}{\epsilon}}\right)$    | $O\left(\sqrt{\frac{L}{\mu}}\log{\frac{L}{\epsilon}}\right)$    |
| RNAG (ours) | $O\left(\xi\sqrt{\frac{L}{\epsilon}}\right)$ | $O\left(\xi\sqrt{\frac{L}{\mu}}\log{\frac{L}{\epsilon}}\right)$ |

## Ideas of proof

Q) Follows original proof.. What modificaitons do we need?

• Parameters: depending on  $K_{\min}$ ,  $K_{\max}$ , D

$$y_{k} = \exp_{x_{k}} (\boldsymbol{\tau_{k}} \bar{v}_{k})$$
$$x_{k+1} = \exp_{y_{k}} (-\boldsymbol{\alpha_{k}} \operatorname{grad} f(y_{k}))$$
$$v_{k} = \Gamma_{x_{k}}^{y_{k}} (\bar{v}_{k} - \log_{x_{k}} (y_{k}))$$
$$\bar{v}_{k+1} = \boldsymbol{\beta_{k}} v_{k} - \boldsymbol{\gamma_{k}} \operatorname{grad} f(y_{k})$$
$$\bar{v}_{k+1} = \Gamma_{y_{k}}^{x_{k+1}} (\bar{v}_{k+1} - \log_{y_{k}} (x_{k+1}))$$

Potential function

$$\phi_{k} = A_{k} \left( f\left(x_{k}\right) - f\left(x^{*}\right) \right) + B_{k} \underbrace{\left( \left\| \bar{v}_{k} - \log_{x_{k}}\left(x^{*}\right) \right\|_{x_{k}}^{2} + \left(\xi - 1\right) \left\| \bar{v}_{k} \right\|_{x_{k}}^{2} \right)}_{2}$$

Squared distances in  $T_{x_k}M$ 

Novel metric distortion lemma

## Continuous-time interpretation

Taking the step size  $s \rightarrow 0$ ,

• RNAG-C converges to the following ODE:

$$\nabla \dot{X} + \frac{1+2\xi}{t}\dot{X} + \operatorname{grad} f(X) = 0.$$

• RNAG-SC converges to the following ODE:

$$\nabla \dot{X} + \left(\frac{1}{\sqrt{\xi}} + \sqrt{\xi}\right)\sqrt{\mu}\dot{X} + \operatorname{grad} f(X) = 0.$$

- These ODEs correspond to those in (Alimisis et al., 2020) for modeling Riemannian acceleration.
- This analysis confirms the accelerated convergence of our algorithms through the lens of continuous-time flows.

## Numerical experiment: Karcher mean of SPD matrices



- RAGDsDR: known accelerated method for g-convex functions.
- RAGD: known accelerated method for strongly g-convex functions. (Note: full acceleration is not guaranteed for RAGDsDR and RAGD)

# Concluding remark

#### Contributions

We proposed RNAG, the first Riemannian optimization algorithm achieving full acceleration.

#### Open questions

Effect of geometry (e.g., sectional curvature) on lower complexity bounds.

|             | convex                                       | $\mu$ -strongly convex                                          |
|-------------|----------------------------------------------|-----------------------------------------------------------------|
| NAG         | $O\left(\sqrt{\frac{L}{\epsilon}}\right)$    | $O\left(\sqrt{\frac{L}{\mu}}\log{\frac{L}{\epsilon}}\right)$    |
| RNAG (ours) | $O\left(\xi\sqrt{\frac{L}{\epsilon}}\right)$ | $O\left(\xi\sqrt{\frac{L}{\mu}}\log{\frac{L}{\epsilon}}\right)$ |

Acknowledgement: Supported in part by Samsung Electronics, National Research Foundation of Korea (MSIT 2020R1C1C1009766), Information and Communications Technology Planning and Evaluation (MSIT 2022-0-00124, 2022-0-00480).