
Private	Adaptive	Optimization	with	
Side	Information

Tian	Li																												Manzil	Zaheer																			Sashank	Reddi																			Virginia	Smith
(CMU)																																	(DeepMind)																								(Google	Research)																									(CMU)



Motivation

2



Motivation

2

Adaptive	optimizers	(e.g.,	Adam,	AdaGrad,	RMSProp)	are	useful	for	a	
variety	of	ML	tasks



Motivation

2

Adaptive	optimizers	(e.g.,	Adam,	AdaGrad,	RMSProp)	are	useful	for	a	
variety	of	ML	tasks
However,	performance	may	degrade	significantly	when	trained	with	
differential	privacy	(DP),	especially	when	the	model	dimension	is	large



Motivation

2

Adaptive	optimizers	(e.g.,	Adam,	AdaGrad,	RMSProp)	are	useful	for	a	
variety	of	ML	tasks
However,	performance	may	degrade	significantly	when	trained	with	
differential	privacy	(DP),	especially	when	the	model	dimension	is	large



How	to	effectively	adapt	to	the	geometry	of	gradients	under	DP?

3



How	to	effectively	adapt	to	the	geometry	of	gradients	under	DP?

3

directly	plug	in	private	gradients	to	estimate	the	statistics	?



How	to	effectively	adapt	to	the	geometry	of	gradients	under	DP?

3

directly	plug	in	private	gradients	to	estimate	the	statistics	?

g̃t ←
1

|B | (∑
i∈B

clip (gi,t, C) + 𝒩 (0,σ2C2))
first	privatize	the	gradients



How	to	effectively	adapt	to	the	geometry	of	gradients	under	DP?

3

directly	plug	in	private	gradients	to	estimate	the	statistics	?

g̃t ←
1

|B | (∑
i∈B

clip (gi,t, C) + 𝒩 (0,σ2C2))
first	privatize	the	gradients


mt ← β1mt + (1 − β1)g̃t, vt ← β2vt + (1 − β2)(g̃t)2

wt+1 ← wt − α
mt

vt + ϵ

then	plug	in	private	gradients	to	any	
adaptive	optimization	methods



How	to	effectively	adapt	to	the	geometry	of	gradients	under	DP?

3

directly	plug	in	private	gradients	to	estimate	the	statistics	?

estimates	can	be	very	noisy!	
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preconditioning	before	privatizing	the	gradients

	encodes	how	predictive	each	coordinate	isA

,		g̃t ←
1

|B | ∑
i∈B

clip( gi,t

A
, C) + 𝒩 (0,σ2C2) A ≈ 𝔼 [g2] + ϵ

(informal)	rate: O ( 1

T ) + O ( 1

T
𝔼 [∥𝒩∥2

A])
Convergence:	

reduced	DP	noise	when	the	gradients	are	sparse

AdaDPS:	Private	Adaptive	Optimization	with	Side	Information
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Full	paper:							arxiv.org/abs/2202.05963


															Code:								github.com/litian96/AdaDPS
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