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Universal approximation theorem

Consider wide 2-layer neural networks.
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Theorem (Informal)
Sufficiently wide 2-layer networks approximate any continuous function.

However, these are existence results. They says nothing about whether
one can learn such approximations.

Cybenko, Approximation by superpositions of a sigmoidal function, MCSS, 1989.
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Mean-field limit

Theorem (Informal)
The training dynamics of an infinitely wide 2-layer neural network is
characterized by the solution of the PDE

∂tρt = ∇ ·
(
ρt∇

δL
δρ

)
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Concurrent works of [Chizat and Bach 2018], [Mei, Montanari, and Nguyen 2018],
and [Rotskoff and Vanden-Eijnden 2018].
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Neural tangent kernel

Theorem (Informal)
The training dynamics of a depth L neural network becomes “linear” in
the infinite-width limit.
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Jacot, Gabriel, and Hongler, Neural Tangent Kernel: Convergence and
Generalization in Neural Networks, NeurIPS, 2018. 4



Deep narrow NN are universal approximators

Infinitely wide NN are provably trainable. What about deep NN?

Recently, universality results have been established for deep NN.

Theorem (Informal3)
MLP with width nin + nout + 1 and large depth can approximate any
continuous function.

However, these are existence results. They says nothing about whether
one can learn such approximations.

3Kidger and Lyons, Universal approximation with deep narrow networks, COLT,
2020.
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Goal: Trainability guarantees for deep neural networks

The tremendous recent progress does not sufficiently address the role of
depth in deep learning.

We present the first trainability guarantee for infinitely deep but narrow
neural networks using the NTK theory.
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Trainability guarantee of deep narrow MLPs

Theorem (Main result, Informal)
Under a certain non-standard but implementable initialization,4 the
training dynamics of the infinitely deep MLP with width nin + nout + 1
provably converges.

Proof characterizes the NTK in the infinite-depth limit. Controlling the
invariance of NTK is much more technical in the fininite-depth limit than
in the infinite-width limit; analysis requries controlling an infinite product
of matrices rather than an infinite sum of matrices.

4Construction inspired by:
Kidger and Lyons, Universal approximation with deep narrow networks, COLT, 2020.
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Initialization scheme for MLP

We analyze MLP with depth L → ∞ with a very particular initialization.
Initialize weights as

W 1 =

 CLIdin

u1

0dout×din

 , W l =

 Idin
0din×1 0din×dout

ul 01×1 01×dout

0dout×din
0dout×1 Idout

 ,

WL =
[
0dout×din

0dout×1 Idout

]
,

for 2 ≤ l ≤ L− 1, where ul
i
iid∼ N (0, 1

din
ρ2) for 1 ≤ l ≤ L− 1 and

CL > 0 is a scalar growing sufficiently fast such that L2/CL → 0

b1 =

 0din×1

v1

CL1dout

 , bl =

 0din×1

vl

0dout×1

 , bL =
[
−CL1dout

]
for 2 ≤ l ≤ L− 1, where vl

iid∼ N (0, C2
Lβ

2) for 1 ≤ l ≤ L− 1.
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Layer 1

Layer 2

Layer 3

Layer 4

Layer L

Layer L− 1

Layer L− 2

Initialization of deep MLP with din = 3 and dout = 2. Intermediate layers
have width din + 1 + dout. Line styles indicate types of weight
initializations (solid:1, double:CL, dash:Gaussian, none:0). Box styles
indicate types of bias initializations (solid:0, dash:Gaussian, double:CL,
double-dash:−CL).



Initialization scheme for CNN

We analyze CNN with depth L → ∞ with a very particular initialization.

w1
1,1,:,: =

0 0 0
0 CL 0
0 0 0

 , w1
2,1,:,: =

u1
1,1 u1

1,2 u1
1,3

u1
2,1 u1

2,2 u1
2,3

u1
3,1 u1

3,2 u1
3,3

 ,

w1
3,1,:,: = 03×3

wl
1,:,:,: = ι3×3, 03×3, 03×3

wl
2,:,:,: =

ul
1,1 ul

1,2 ul
1,3

ul
2,1 ul

2,2 ul
2,3

ul
3,1 ul

3,2 ul
3,3

 , 03×3, 03×3

wl
3,:,:,: = 03×3, 03×3, ι3×3

wL
1,:,:,: = 03×3, 03×3, ι3×3

for 2 ≤ l ≤ L− 1, where ul
i,j

iid∼ N (0, ρ2) for 1 ≤ l ≤ L− 1 and CL > 0

is a scalar growing as a function of L at a rate satisfying L2/CL → 0.
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Layer 1

Layer 2

Layer 3

Layer L− 2

Layer L− 1

Layer L

Average Pool

Initialization of deep CNN with 4× 4 input. The 3 grids per row
represent the 3 channels per layer, and the box at the top represents the
scalar output of the final average pool. Line styles indicate types of
weight initializations (solid:diag(0, 1, 0), double:diag(0, CL, 0),
dash:Gaussian, none:03×3). Box styles indicate types of bias
initializations (solid:0, dash:Gaussian, double:CL, double-dash:−CL).



Trainability guarantee of deep narrow CNNs

Initialize the biases as follows:

(b11, b
1
2, b

1
3) = (0, v1, CL)

(bl1, b
l
2, b

l
3) = (0, vl, 0)

bL = −CL

for 2 ≤ l ≤ L− 1, where vl
iid∼ N (0, C2

Lβ
2) for 1 ≤ l ≤ L− 1.

Theorem (Main result, Informal)
Under said initialization, the training dynamics of the infinitely deep CNN
with width nin + nout + 1 provably converges.

Proof follows from analogous argument as the MLP case.
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Experiments
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Our initialization
Kaiming initialization
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(Left) Depth 1000 MLP (Right) Depth 1000 CNN

Depth 1000 MLPs and CNNs with MNIST are trainable with our
proposed initialization but not with the standard Kaiming He
initialization. For Kaiming initialization, we show trials with learning
rates 1× 10−5, 1× 10−4, 1× 10−3, 0.01, 0.1, and 1.
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Conclusion

Deep ReLU MLPs and CNNs with particular initializations (but standard
architecture) are provably trainable in the infinite-depth limit.
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