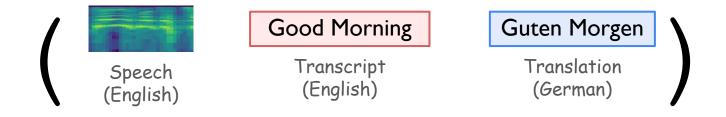

Revisiting End-to-End Speech-to-Text Translation From Scratch

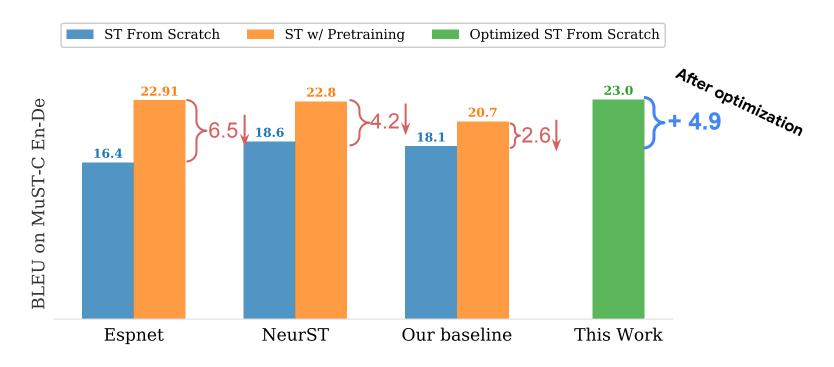
Biao Zhang¹, Barry Haddow¹, Rico Sennrich^{2,1}

¹University of Edinburgh ²University of Zurich


End-to-End Speech-to-Text Translation Is Challenging

E2E ST aims at translating speech directly to a foreign text without any intermediate outputs, e.g., transcript

- Implicitly modeling ASR and MT via a single model is difficult
- Performance of the direct ST baseline lags far behind the cascade


Rescue: ASR/MT Pretraining and ST Finetuning

Step I: pretrain ST encoder/decoder with ASR/MT using **transcripts**

Step 2: finetune the model on direct speech-translation pairs

E2E ST Without Transcript Performs Poorly, Really?

ST from Scratch: train ST on speech-translation pairs alone and from scratch

Why Revisit E2E ST *From Scratch*?

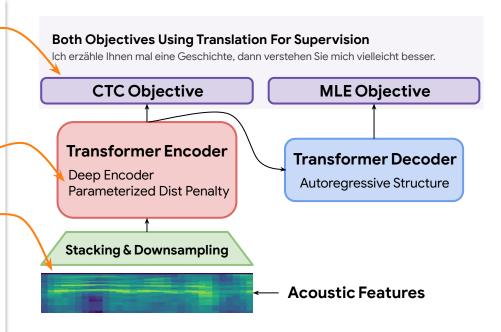
- ✓ Improve our understanding of pretraining in E2E ST
 - when and where ASR/MT pretraining really matters
- Transcript is not always available
 - > 3000 languages in our world have no written form
- Simplify the training pipeline, and develop useful inductive biases
 - using two-stage training complicates the modeling

Improving E2E ST Towards Training From Scratch

CTC Regularization

- Use translation as CTC labels
- No transcripts are used

Parameterized Distance Penalty (PDP)


Add freedom in local attention modeling

Neural Acoustic Feature Modeling

Use raw waveform to retain local details

Hyperparameter Tuning

• Beam search; Model depth/width

Using speech-translation pairs alone with no transcripts

Improved Results: Different Techs Are Complementary

System	BLEU	Avg
NeurST (pretrain-finetune)	22.8	24.9
Baseline	18.1	<u>-</u>
+ hyperparameter tuning	21.1 +0.	_
+ PDP (R=512)	21.8 +0.	-
+ CTC regularization	22.7	-
+ neural acoustic model	23.0 +0.	25.2

Test performance on MuST-C En-De and average results on the other language pairs Note all our models are trained with speech-translation pairs alone

To Summarize

- The quality gap between ST with and without transcripts is overestimated
- We figure out a set of practices for improving ST from scratch
 - deep post-LN encoder, wider feed-forward layer, ST-based CTC regularization and parameterized distance penalty, neural acoustic feature modeling
- Pretraining still matters
 - o low-resource regime and large-scale external data available

Paper: https://arxiv.org/abs/2206.04571

Code: https://github.com/bzhangGo/st_from_scratch

