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= Utility-Communication-Privacy Tradeoff
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\2,) =S+ L 5, ((8T2:) + N (0, 2+ ¢))

server ' client

We must use linear encoding schemes due to secure aggregation

e perform ji(zy,...
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O(min(n?e? logn, d)) bits are both necessary and achievable

and, achieves optimal MSE as 0( 22) under (g,d) —

e Communication decreases with more privacy! Theorem 5.2

Assume ||p(z1,-..,2n)|lo < s, then only
O (slogdlog (n* + slog (d/e?))) bits are needed for o (“¥%%) MSE.

Theorem 6.1
e |fthe sumis sparse, we can compress more and obtain lower MSE!

e How? By using compressed sensing and LASSO decoding.
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e Compare within the same noise multiplier, z.
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Fig. 1: Higher noise multiplier, z, implies
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get r=10x. Even without DP we get about 3x.
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privacy. A=1%. At r=20x, z=0.3 can be obtained
“for free.



Main Empirical Results

e Stack Overflow Next Word Prediction (SONWP) has N=342,477 clients. We use b=18.
e Federated EMNIST (F-EMNIST) has N=3400 clients. We use b=16.
e Define a relative slack, 4, for accuracy-drop relative to r=1.

e Compare within the same noise multiplier, z.

SONWP at n = 1000 clients per round F-EMNIST at n =100 clients per round

Compression Rate, r | Best .

244 | 85.04 % * Compression
o 1.0 -+ 20.0 © atz
= 5.0 —e- 30.0 ° 8251 =
<231 >
a ‘ 10.0 =42 40.0 O R Weveennnnnns M - k.
E _‘-. 500 E 80 0 ........ L LLET Ty Werrsvnnnnns m
3 22+ —— Slack, A| 3 77.5
O O

L _ i = e
f 211 ) 42 75.0 L Ll bl T " L R *
(%2}
& _______ 2 72.5 Noise Multiplier, z
20 = © 0.0 =@ 0.3 — 0.7
g e e L il R . £ 70.04 0.1 =+ 05
= " ——— ic =T
4o o —— | et | et
. 194 A — e “'—-.—.‘ 67.5 *.*'_‘- ''''' L G TETEY St - !
e — e — A
' "1 10 20 30 40 50

00 01 02 03 04 05 06
Noise Multiplier, z

Fig. 1: Higher noise multiplier, z, implies
higher compression. A=4%. With z=0.5, we
get r=10x. Even without DP we get about 3x.

Compression Rate, , r
Fig. 2: Higher compression implies tighter
privacy. A=1%. At r=20x, z=0.3 can be obtained
“for free.



Sketching or (Linear) Quantization?

e Fixz=0.5 and n=100 for F-EMNIST 75.21 =
e Vary sketch compression r and the bit width b & __ |

.
e Previous best accuracy: ~75.25%, @b=16, r=1x & | _
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Fig. 3: Optimizing both r and b can further decrease
communication, to 0.24 bits per parameter at z= 0.5.

Code: https://qgithub.com/google-research/federated/tree/master/private linear compression



https://github.com/google-research/federated/tree/master/private_linear_compression

Conclusions

e Fundamental characterization of privacy-utility-communication tradeoff under secure aggregation
e Theoretical analysis well-matched by empirical results
e Practical benefits down to 0.24 bits/param on large-scale tasks

e May enable increasing the number of clients to improve utility (despite secure aggregation limitations)

Noise Number of || Compression Final Test
Multiplier, z | Clients, n Rate, r Performance, %

01 100 1 83.05 £+ 0.44

' 1000 10 82.95 + 0.40

03 100 1 80.61 + 0.46

' 1000 40 80.78 £+ 0.29

( 0.5 100 1 75.34 £ 0.49
' 1000 50 80.13 + 0.22

Table 2. With z sufficiently large, increasing n = 100 — 1000 can attain higher model performance even for increased r. In
particular, to maintain the same SecAgg runtime, we require » > 15 for this setting to increase n = 100 — 1000. We observe that
z > 0.3 meets this requirement while achieving final models that outperform the n = 100, » = 1x client baseline. Results for SONWP.
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