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Main Theoretical Results
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● Communication decreases with more privacy! Theorem 5.2
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Assume                                         , then only

                                                       bits are needed for                  MSE. 

● If the sum is sparse, we can compress more and obtain lower MSE!

● How? By using compressed sensing and LASSO decoding.

Theorem 6.1



Main Empirical Results

● Stack Overflow Next Word Prediction (SONWP) has N=342,477 clients. We use b=18.

● Federated EMNIST (F-EMNIST) has N=3400 clients. We use b=16 .

● Define a relative slack, Δ, for accuracy-drop relative to r=1.

● Compare within the same noise multiplier, z.



Fig. 1: Higher noise multiplier, z, implies 
higher compression. Δ=4%. With z=0.5, we 
get r=10x. Even without DP we get about 3x. 

Fig. 2: Higher compression implies tighter 
privacy. Δ=1%. At r=20x, z=0.3 can be obtained 
`for free’.
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● Fix z=0.5 and n=100 for F-EMNIST

● Vary sketch compression r and the bit width b

● Previous best accuracy: ~75.25%,  @b=16, r=1x 

● Allow slack Δ=1%

● Cannot go lower than b=10 bits/param

● Optimizing both: 0.24 bits per param @ 

b=12,r=50x

Code: https://github.com/google-research/federated/tree/master/private_linear_compression

Fig. 3: Optimizing both r and b can further decrease 
communication, to 0.24 bits per parameter at z= 0.5.

Sketching or (Linear) Quantization?

https://github.com/google-research/federated/tree/master/private_linear_compression


● Fundamental characterization of privacy-utility-communication tradeoff under secure aggregation

● Theoretical analysis well-matched by empirical results

● Practical benefits down to 0.24 bits/param on large-scale tasks

● May enable increasing the number of clients to improve utility  (despite secure aggregation limitations)

Conclusions
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