

Causal structure-based root cause analysis of outliers

ICML 2022

Kailash Budhathoki, Lenon Minorics, Patrick Blöbaum, Dominik Janzing

July 17, 2021

Motivation

Scenario Event x_n of variable X_n flagged as an outlier! We jointly observe (x_1, \dots, x_n) of (X_1, \dots, X_n) .

Goal Identify the root causes of outlier x_n amongst X_1, \ldots, X_n

But many outlier scoring algorithms!

Toutlier score feature map (can be an existing algorithm) $S_X^{\tau}(x) \coloneqq -\log P_X \{ \tau(X) \ge \tau(x) \}$ event random variable

IT outlier score: Example

z-score:
$$\mathbf{z}(x) \coloneqq \frac{|x-\mu_X|}{\sigma_X}$$

 $S_X^{\mathbf{z}}(x) \coloneqq -\log P_X\{\mathbf{z}(X) \ge \mathbf{z}(x)\}$

Formal framework to study outliers

How can we identify the root causes of outliers?

- \mathcal{F} : set of "modular" functions or causal mechanisms $\{f_j\}_{j=1}^n$, describing how each X_j is generated, $\{X_j \coloneqq f_j(PA_j, N_j)\}_{j=1}^n$
- P_N : joint distribution over N

To attribute the outlier x_n to a variable X_j , we ask a **counterfactual** question:

Would x_n not have been an outlier had the causal mechanism at X_j been "normal"?

Canonical Structural Causal Model $X_i \coloneqq f_i(PA_i, n_i)$ for $N_i \coloneqq n_i$ $f_j^{(1)}(PA_j)$ $N_{j} = 1$ $f_{:}^{(1)}$ $\rightarrow X_j \coloneqq f_j (PA_j, N_j)$ PA_i $f_j^{(n)}(PA_j)$ $f_i^{(n)}$ $N_i = n$

$$P_{N}$$
 defined on the set of mechanisms $\left\{ f_{j}^{\left(1
ight) }$, ... , $f_{j}^{\left(n
ight) }
ight\}$

Canonical Structural Causal Model

We observed
$$x_j \coloneqq f_j(pa_j, 1)$$
 with $N_j \coloneqq 1$

factual mechanism
$$f_i^{(1)}$$

counterfactual mechanism $f_i^{(n)}$

To attribute the outlier x_n to a variable X_j , we ask a **counterfactual** question:

Would x_n not have been an outlier had the causal mechanism of X_j been "normal"?

Causal Attribution

impact of replacing causal mechanism at X_j on the log tail probability defines the contribution of X_j

$$C(j \mid 1, ..., j-1) \coloneqq \log \frac{P^{RAND(N_1, ..., N_{j-1})} \{\tau(X_n) \ge \tau(x_n)\}}{P^{RAND(N_1, ..., N_j)} \{\tau(X_n) \ge \tau(x_n)\}}$$

Average contributions over all orderings to avoid dependence on ordering (Shapley value approach) Shapley contributions sum up to the IT outlier score $S_{X_n}^{\tau}(x_n)$

Formal framework to identify root causes of outliers

Implementation available in Python DoWhy!

https://github.com/py-why/dowhy