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Motivation: Learning from Multiple Data 
Domains in Big Data Applications

• Learning from multiple data 
domains is common:
 Average Temperature Prediction
 Domain: Climate Division

 Gene Expression
 Domain: Gene

…

• Leverage abundant samples 
from related domains
 Improve model generalizability

• #Domains     grows quickly 2
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Motivation: Better Model via Mutual Transfer 
Learning with Learnability Structure

• Each data domain       source/target

• Similar domains form subgroups           Learnability Structure
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Motivation: Learnability Structure obtained from 
Real Data

• Learnability Structure Recovery: Key to Mutual Transfer Learning
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Challenge I: Mixed-Effects Heterogeneity

• Common Linear Model (    domains in total):

 Parameters are transferable among all the domains

• Linear Mixed-Effects Model:

 Global Parameters: Transferable among all the domains
 Heterogeneous Parameters: Transferable in one subgroup
 Random Effects: Domain-Specific, cannot be transferred
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Challenge I: Mixed-Effects Heterogeneity

• Linear Mixed-Effects Model:

• However, previous methods have their limitations:
Global Parameters Heterogeneous Parameters

Random Effects
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Challenge II: Large-Scale Data Setting

• The number of domains     grows rapidly in big data applications

• Mutual transfer learning methods suffer from high time cost
 CD Fusion1: Time Complexity 
 e.g., NOAA Dataset: 25.83 hr/iter
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Proposed: A Difference Standardization Method 
for Mutual Transfer Learning (DiffS)

• Accurate Learnability Structure Recovery

• Fast Estimation
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Raw Data Raw Domain Difference
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Proposed: A Difference Standardization Method 
for Mutual Transfer Learning (DiffS)

• Accurate Learnability Structure Recovery

• Fast Estimation
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Standardized Domain DifferenceRaw Data

Differences of domains 
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• Accurate Learnability Structure Recovery

• Fast Estimation

Proposed: A Difference Standardization Method 
for Mutual Transfer Learning (DiffS)
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Proposed: A Difference Standardization Method 
for Mutual Transfer Learning (DiffS)

Subgroups Estimated via 
Filtered Differences

• Accurate Learnability Structure Recovery

• Fast Estimation
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• Accurate Learnability Structure Recovery

• Fast Estimation



Solution to Challenge I: Learnability Structure 
Recovery with Standardized Domain Difference

• Proposed: Standardized Domain Difference

 : calculated from raw data
 : domain-wise Generalized Least Squares estimate

• We found that: 
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Solution to Challenge II: Closed-Form Solution 
based on DiffS Learnability Structure Estimate

• Objective of DiffS:

• Closed-Form Solution:
 is constructed by
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Theoretical Results

• DiffS is able to perfectly recover the learnability structure:

• DiffS achieves a significant complexity improvement:
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Empirical Results on Synthetic Datasets

• DiffS has best prediction performance among baselines

• DiffS obtains best parameter estimation

• DiffS achieves the fastest estimation speed (~1000× CD Fusion)
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Empirical Results on Two Real-World Datasets

• Real-world tasks
 NOAA nClimDiv Temperature Prediction
Microarray Gene Expression

• DiffS provides more reasonable 
results within an acceptable time.
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Vose, R. S., Applequist, S., Squires, M., et al. Noaa’s gridded climate divisional dataset (climdiv). NOAA National Climatic Data Center, 2014. doi: 10.7289/V5M32STR.
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Thank you for your attention!

• Haoqing Xu (haoqing_xu@outlook.com)

• Meng Wang (meng.wang@seu.edu.cn)

• Beilun Wang* (beilun@seu.edu.cn)

• Spotlight Presentation
 https://icml.cc/virtual/2022/spotlight/17526

• Poster: #17525
 https://icml.cc/virtual/2022/poster/17525
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