

A Difference Standardization Method for Mutual Transfer Learning

Haoqing Xu Meng Wang Beilun Wang*

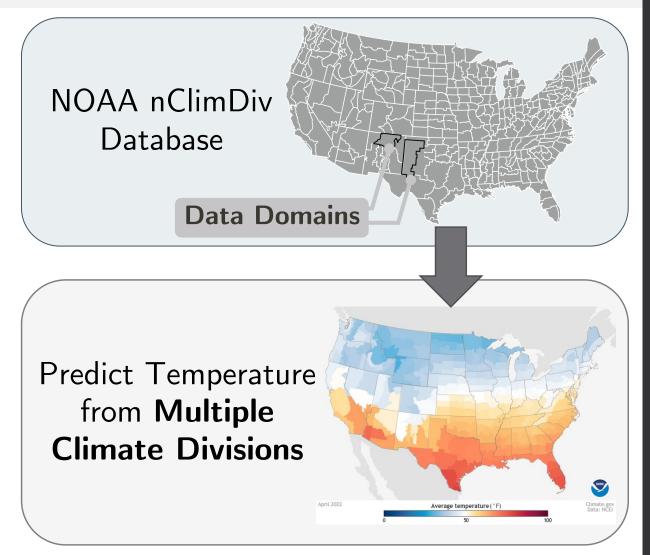
Southeast University

Motivation: Learning from Multiple Data Domains in Big Data Applications

- Learning from **multiple data domains** is common:
 - Average Temperature Prediction
 Domain: Climate Division
 - Gene Expression
 - Domain: Gene

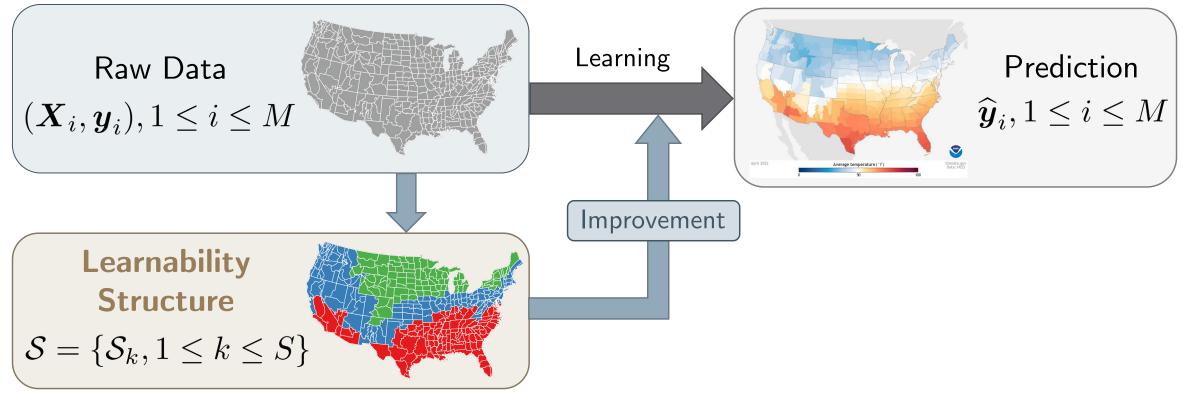
•

- Leverage abundant samples from related domains
 - Improve model generalizability
- #Domains M grows quickly



Motivation: Better Model via Mutual Transfer Learning with Learnability Structure

- Each data domain source/target
- Similar domains form subgroups $S_k \longrightarrow$ Learnability Structure S



Cheng, C.-W., Qiao, X., and Cheng, G. Mutual transfer learning for massive data. In Proceedings of the 37th International Conference on Machine Learning, pp. 1800–1809, 2020.

3

Motivation: Learnability Structure obtained from Real Data

• Learnability Structure Recovery: Key to Mutual Transfer Learning

Artistic Styles

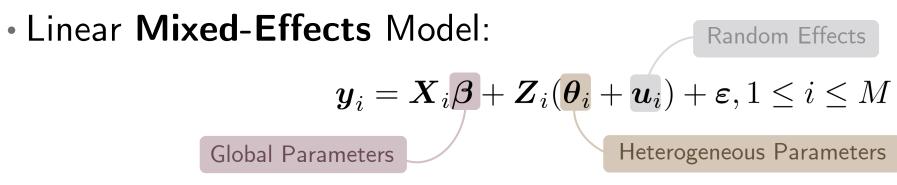
Climatic Regions

User Preferences

Challenge I: Mixed-Effects Heterogeneity

• Common Linear Model (M domains in total): $m{y}_i = m{X}_i m{eta} + m{arepsilon}, 1 \leq i \leq M$

• Parameters are transferable among all the domains



- Global Parameters: Transferable among all the domains
- Heterogeneous Parameters: Transferable in one subgroup
- Random Effects: Domain-Specific, cannot be transferred

$$\boldsymbol{\theta}_i \equiv \boldsymbol{\alpha}_k, i \in \mathcal{S}_k$$

Challenge I: Mixed-Effects Heterogeneity

• Linear Mixed-Effects Model:

$$\boldsymbol{y}_i = \boldsymbol{X}_i \boldsymbol{\beta} + \boldsymbol{Z}_i (\boldsymbol{\theta}_i + \boldsymbol{u}_i) + \boldsymbol{\varepsilon}, 1 \le i \le M$$

Global Parameters

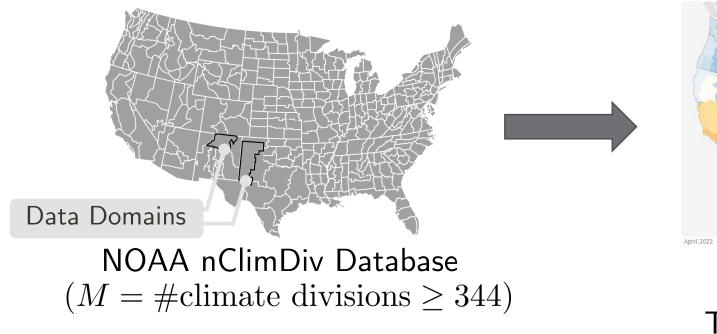
Heterogeneous Parameters

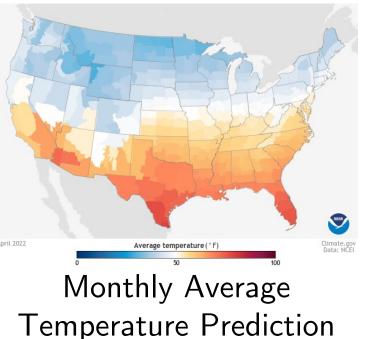
• However, previous methods have their limitations:

Previous Methods	Learnability Structure Recovery	Mixed-Effects Model Learning
Generalized Least Squares	\bigotimes	\bigcirc
Statistical Methods	\odot	\bigotimes
Goal	$\overline{\mathbf{O}}$	\bigcirc

Challenge II: Large-Scale Data Setting

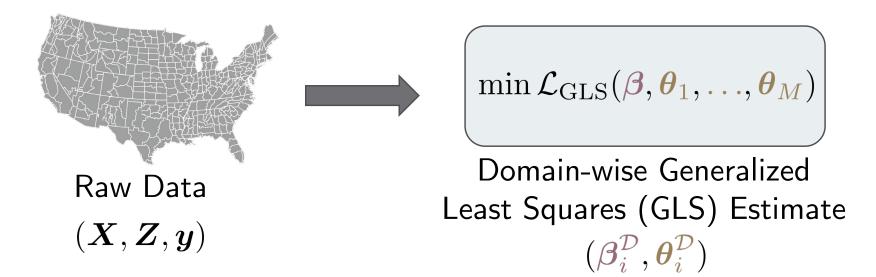
- The number of domains M grows rapidly in big data applications
- Mutual transfer learning methods suffer from high time cost
 - CD Fusion¹: Time Complexity $O[M^3(q^3 + n^2q) + M^4q^2]$
 - e.g., NOAA Dataset: 25.83 hr/iter 😣



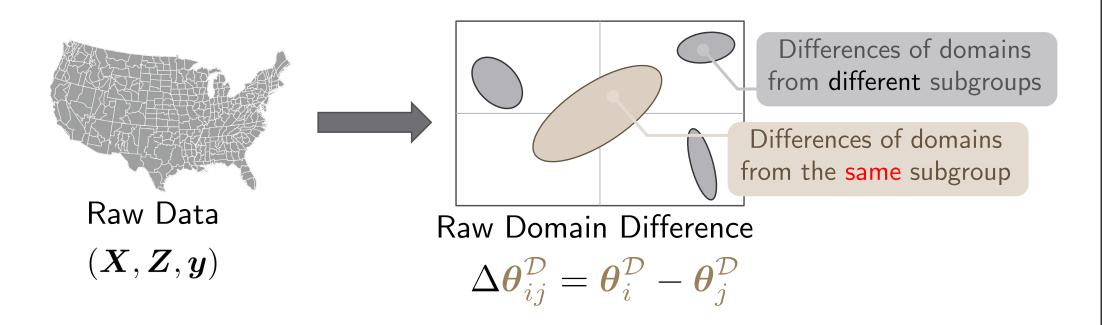


¹(Cheng et al., 2020)

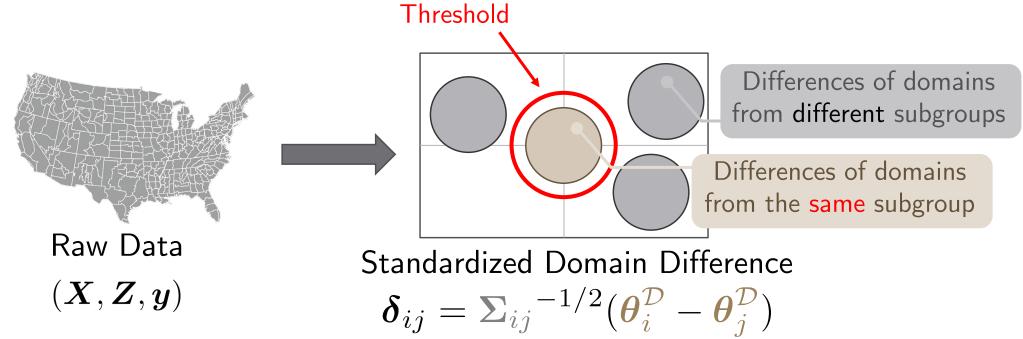
- Accurate Learnability Structure Recovery
- Fast Estimation



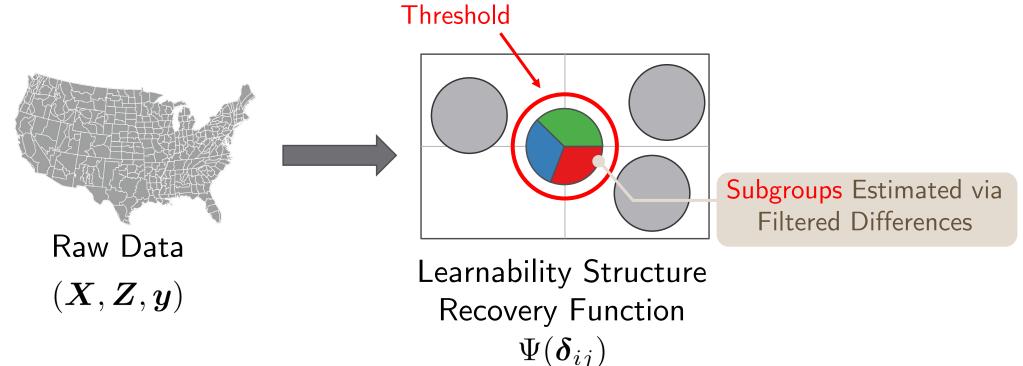
- Accurate Learnability Structure Recovery
- Fast Estimation



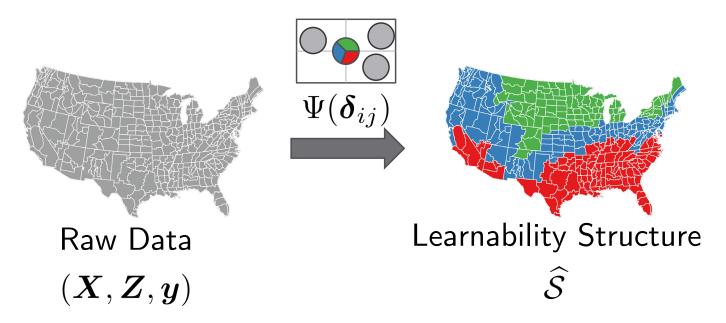
- Accurate Learnability Structure Recovery
- Fast Estimation



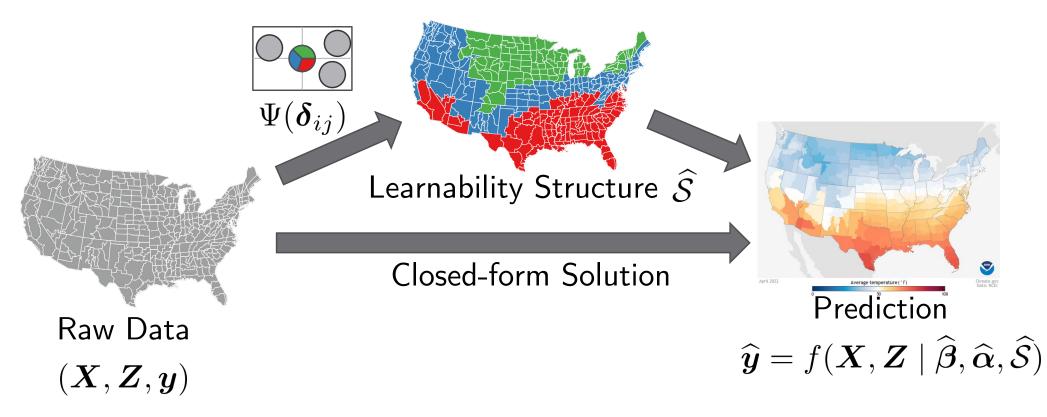
- Accurate Learnability Structure Recovery
- Fast Estimation



- Accurate Learnability Structure Recovery
- Fast Estimation



- Accurate Learnability Structure Recovery
- Fast Estimation



Solution to Challenge I: Learnability Structure Recovery with Standardized Domain Difference

Proposed: Standardized Domain Difference

$$\boldsymbol{\delta}_{ij} = \boldsymbol{\Sigma}_{ij}^{-1/2} (\boldsymbol{\theta}_i^{\mathcal{D}} - \boldsymbol{\theta}_j^{\mathcal{D}})$$

• Σ_{ij} : calculated from raw data

• $\theta_i^{\mathcal{D}}$: domain-wise Generalized Least Squares estimate

• We found that: $\delta_{ij} \sim \begin{cases} \mathcal{N}(\mathbf{0}, \mathbf{I}), & i, j \text{ in the same subgroup,} \\ \mathcal{N}(\Sigma_{ij}^{-1/2} \Delta \theta_{ij}^*, \mathbf{I}), & \text{otherwise.} \end{cases}$ • $\mathbf{\Delta} \theta_{ij}^{\mathcal{D}} = (\|\delta_{ij}\|^2)_{M \times M} = (\|\delta_{ij}\|^2)_{M \times M} = \mathbf{\Delta}$ Raw Data $(\mathbf{X}, \mathbf{Z}, \mathbf{y}) = \mathbf{\Delta}$ Branchardized Domain Difference $\mathbf{\Delta}$ • $\mathbf{\Delta} = (\mathbf{U} + \mathbf{U} + \mathbf{U})$ • $\mathbf{U} = (\mathbf{U} + \mathbf{U})$

Solution to Challenge II: Closed-Form Solution based on DiffS Learnability Structure Estimate

• Objective of DiffS:

$$\begin{array}{ll} \min \ \mathcal{L}_{\mathrm{DiffS}}(\boldsymbol{\beta}, \boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{M}, \boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{|\widehat{\mathcal{S}}|}) = \\ & \sum_{i=1}^{M} (\boldsymbol{y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta} - \boldsymbol{Z}_{i} \boldsymbol{\theta}_{i})^{\top} \boldsymbol{W}_{i} (\boldsymbol{y}_{i} - \boldsymbol{X}_{i} \boldsymbol{\beta} - \boldsymbol{Z}_{i} \boldsymbol{\theta}_{i}), \\ \text{s.t.} \ \widehat{\mathcal{S}} = \Psi(\boldsymbol{\Delta}), \qquad \begin{array}{l} \text{Learnability Recovery with} \\ \text{Standardized Domain Difference} \\ & \boldsymbol{\theta}_{i} = \boldsymbol{\alpha}_{s}, \ \forall i \in \widehat{\mathcal{S}}_{k}, 1 \leq k \leq |\widehat{\mathcal{S}}|. \end{array}$$

• Closed-Form Solution: $(\widehat{\beta}, \widehat{\alpha}_1, ..., \widehat{\alpha}_{|\widehat{S}|})^\top = [G^\top W G]^{-1} G^\top W y$ • G is constructed by X_i, Z_i, \widehat{S}

Theoretical Results

• **DiffS** is able to **perfectly** recover the learnability structure:

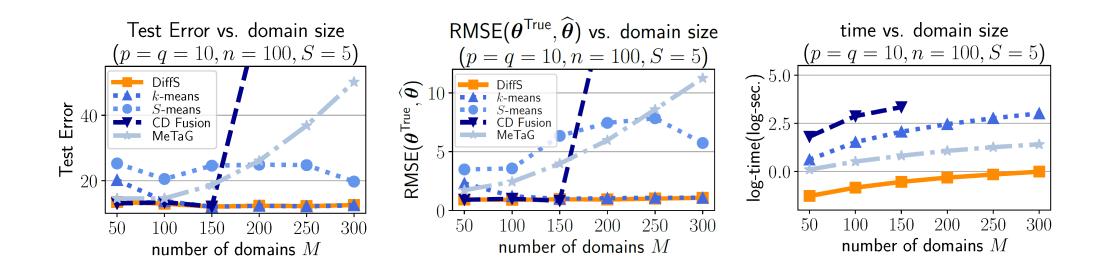
Theorem 4.3 (Learnability structure recovery guarantee). Denoting S^* as the true learnability structure, supposing that the Assumption 4.1 is satisfied and learnability structure recovering is applied via Algorithm 2, thus $\hat{S} = S^*$.

• **DiffS** achieves a significant complexity improvement:

CD Fusion (Baseline) $O[\underline{M^3}(q^3 + n^2q) + \underline{M^4}q^2]$

DiffS (Proposed)
$$O[M^2(n^2(p+Sq)+q^3)]$$

Empirical Results on Synthetic Datasets

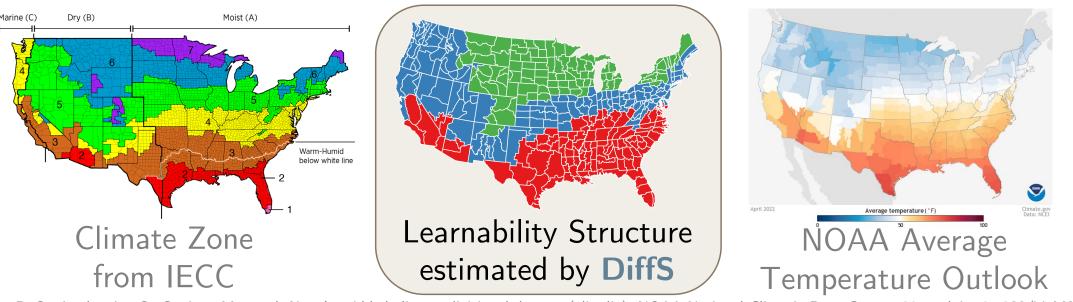


- **DiffS** has **best** prediction performance among baselines
- **DiffS** obtains **best** parameter estimation
- DiffS achieves the fastest estimation speed (~1000× CD Fusion)

Empirical Results on Two Real-World Datasets

- Real-world tasks
 - NOAA nClimDiv Temperature Prediction
 - Microarray Gene Expression
- **DiffS** provides more reasonable results within an acceptable time.

Method	NOAA nClimDiv Database		
method	Timecost	Test Error	
DiffS	33.79	82.44 ± 3.44	
k-means	119.73	88.72 ± 8.91	
MeTaG	32.49	$> 10^{200}$	
	Microarray Data		
DiffS	0.0169	$\boldsymbol{0.93 \pm 0.14}$	
k-means	0.2677	0.96 ± 0.13	
MeTaG	0.2988	0.90 ± 0.14	



Vose, R. S., Applequist, S., Squires, M., et al. Noaa's gridded climate divisional dataset (climdiv). NOAA National Climatic Data Center, 2014. doi: 10.7289/V5M32STR.

Thank you for your attention!

- Haoqing Xu (<u>haoqing xu@outlook.com</u>)
- Meng Wang (<u>meng.wang@seu.edu.cn</u>)
- Beilun Wang* (<u>beilun@seu.edu.cn</u>)
- Spotlight Presentation
 - <u>https://icml.cc/virtual/2022/spotlight/17526</u>
- Poster: #17525
 - <u>https://icml.cc/virtual/2022/poster/17525</u>

19