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Motivation: Learning from Multiple Data
Domains in Big Data Applications

- Learning from multiple data
domains is common:

* Average Temperature Prediction
- Domain: Climate Division

* Gene Expression
- Domain: Gene

- Leverage abundant samples
from related domains
- Improve model generalizability

- #Domains M grows quickly
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Motivation: Better Model via Mutual Transfer
Learning with Learnability Structure

- Each data domain ===) source/target

- Similar domains form subgroups S, ™) Learnability Structure S
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Cheng, C.-W., Qiao, X., and Cheng, G. Mutual transfer learning for massive data. In Proceedings of the 37th International Conference on Machine Learning, pp. 1800-1809, 2020.
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Motivation: Learnability Structure obtained from
Real Data

- Learnability Structure Recovery: Key to Mutual Transfer Learning
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Challenge |: Mixed-Effects Heterogeneity

- Common Linear Model (M domains in total):

- Parameters are transferable among all the domains

- Linear Mixed-Effects Model: RandomIEr et
y. =XB8+Z;0;+u;) +e,1<i<M

Global Parameters Heterogeneous Parameters

* Global Parameters: Transferable among all the domains

- Heterogeneous Parameters: Transferable in one subgroup [HZ- = (v,1 € Sk]




Challenge |: Mixed-Effects Heterogeneity

- Linear Mixed-Effects Model: Random Effects
Yy =XB+Z;0;,+u;) +e,1<i:<M

Global Parameters Heterogeneous Parameters

- However, previous methods have their limitations:

Previous Learnability Mixed-Effects
Methods Structure Recovery| Model Learning

Lonet Squares ® ©
Methods © ®
Goal @ @




Challenge Il: Large-Scale Data Setting

- The number of domains M grows rapidly in big data applications

- Mutual transfer learning methods suffer from high time cost
- CD Fusion!: Time Complexity O[M?>(q® + n?q) + M*¢?]
- e.g., NOAA Dataset: 25.83 hr/iter ®
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Proposed: A Difterence Standardization Method
for Mutual Transfer Learning (DiffS)

- Accurate Learnability Structure Recovery @

- Fast Estimation @
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Proposed: A Difterence Standardization Method
for Mutual Transfer Learning (DiffS)

- Accurate Learnability Structure Recovery @

- Fast Estimation @
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Proposed: A Difterence Standardization Method
for Mutual Transfer Learning (DiffS)

- Accurate Learnability Structure Recovery @

- Fast Estimation @
Threshold

\
\ Differences of domains
Q from different subgroups
‘ Q Q Differences of domains

from the same subgroup
|

Raw Data Standardized Domain Difference

X, Z:y) §ij =2, 1207 - 07)




Proposed: A Difterence Standardization Method
for Mutual Transfer Learning (DiffS)

- Accurate Learnability Structure Recovery @

- Fast Estimation @
Threshold
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Learnability Structure
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Proposed: A Difterence Standardization Method
for Mutual Transfer Learning (DiffS)

- Accurate Learnability Structure Recovery @

- Fast Estimation @
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Proposed: A Difterence Standardization Method
for Mutual Transfer Learning (DiffS)

- Accurate Learnability Structure Recovery @

- Fast Estimation @
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Solution to Challenge I: Learnability Structure
Recovery with Standardized Domain Difference

» Proposed: Standardized Domain Difference
—1/2/nD D
dij =3, 1207 - 67)
» 2., calculated from raw data
: 9?: domain-wise Generalized Least Squares estimate

- We found that: s.. N(0,1), 7,7 in the same subgroup,
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Solution to Challenge Il: Closed-Form Solution
based on DiffS Learnability Structure Estimate

- Objective of DiffS:
min Lpigs(3,01,...,00,a1,. .., a|§|) =
M
(y; — X:8—Z:0,) W,(y, — X.8— Z,6,),

[

- Learnability Recovery with

st S = U(A), Standardized Domain Difference
0, =, VieS,1<k<|S|

N T
- Closed-Form Solution: (ﬁ,al, . .,&g) = [G'WG]'G'Wy
- GG is constructed by X, Zi,g




Theoretical Results

- DiffS is able to perfectly recover the learnability structure:

Theorem 4.3 (Learnability structure recovery guarantee).
Denoting §* as the true learnability structure, supposing
that the Assumption 4.1 is satisfied and learnability structure
recovering is applied via Algorithm 2, thus S = §*.

- DiffS achieves a significant complexity improvement:

~
g CD Fusion (Baseline) ([ DiffS (Proposed)

\O[Mg(q3 +n’q) + M*q”] OV (n*(p+ Sq) + %)

N\




Empirical Results on Synthetic Datasets

Test Error vs. domain size RMSE(HT”‘e,b\) vs. domain size time vs. domain size
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- DiffS has best prediction performance among baselines

- DiffS obtains best parameter estimation

- DiffS achieves the fastest estimation speed (~1000x CD Fusion)




Empirical Results on Two Real-World Datasets

- Real-world tasks NOAA nClimDiv Database
] ] o Method Timecost Test Error
* NOAA nClimDiv Temperature Prediction DS 2379 2244 1 3 42
MeTaG 32.49 > 10290
- DiffS provides more reasonable Microarray Data
. . . DiffS 0.0169 0.93+0.14
results within an acceptable time. b-means  0.2677 0.96 = 0.13
MeTaG 0.2988 0.90+0.14
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Vose, R. S., Applequist, S., Squires, M., et al. Noaa's gridded climate divisional dataset (climdiv). NOAA National Climatic Data Center, 2014. doi: 10.7289/V5M32STR.
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