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The problem of fluid motion estimation

• Fluid flow motion estimation is a topic of interest for many science 
and engineering fields.

𝜕𝒖
𝜕𝑡 + 𝒖 % ∇𝒖 = −

1
𝜌 ∇𝑝 + 𝜈∇

!𝒖 + 𝒇

Left: 3rd PIV Challenge Right: photograph from NASA, 2001; STS-100



Fluid Flow and Optical Flow

• Advection-Diffusion Equation 

𝜕𝐼
𝜕𝑡
+ ∇ % (𝐼𝒖) = 𝐷∇!𝐼

- 𝐼: A scalar field to be transport.
- 𝐷: Diffusion coefficient.

∇ % 𝒖 = 0

- Divergence-free condition

& 𝐷 = 0&

- No diffusion
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Brightness Constancy Assumption (BCA)1
1Horn, B. and Schunck., B. Determining optical flow. Artificial Intelligence, 17:185–203, 1981.



Motivation

• An approach based on BCA alone misses key dynamics when applied 
to fluid flow

- Given a sequence of consecutive fluid observation images 𝑰 = (𝐼!, 𝐼", 𝐼#, … , 𝐼$)
- To estimate the dense flow field (displacement field)
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Prediction and Correction

• Design an optical flow based predictor constrained by PDE
• Use a fluid informed corrector to compensate the missing dynamics

- Given a sequence of consecutive fluid observation images 𝑰 = (𝐼!, 𝐼", 𝐼#, … , 𝐼$)
- To estimate the dense flow field (displacement field)



Fluid Motion Predictor

• Variational optical flow approach constrained by the Stokes equation.

min
𝒖
6
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Data term
Smoothness Divergence



Fluid Motion Predictor

• Variational optical flow approach constrained by the Stokes equation.

min
𝒖
6

𝜕𝐼
𝜕𝑡
+ 𝒖 % ∇𝐼 +𝜇 ∇𝒖 ! + 𝑝∇ % 𝒖𝑑𝒙

−𝜇∇!𝒖 + ∇𝑝 = ∇𝐼

Its Euler-Lagrange equation is Stokes equation1:

1Note: The derivation is shown in Appendix B of the paper.



Physical Corrector

Starting from Chorin’s projection method1

• Generalise to a generic operator splitting scheme
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1Chorin, A. J. Numerical solution of the navier-stokes equations. 
Math. Comp., pp. 745–762, 1968.
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Physical Corrector

This recovers the incompressible Navier- Stokes equation 

• Generalise to a generic operator splitting scheme
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Physical Corrector

Replace the pressure gradient term

• Generalise to a generic operator splitting scheme
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Physical Corrector

• Generalise to a generic operator splitting scheme
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Approximate the 𝒖! using estimated "𝒖! from the predictor and the 
tentative velocity 𝒖!∗



Physical Corrector

• Generalise to a generic operator splitting scheme
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Κ! : control factor (0 < Κ! <1)

Approximate the 𝒖! using estimated "𝒖! from the predictor and the 
tentative velocity 𝒖!∗



Physical Corrector

• Generalise to a generic operator splitting scheme
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ℛ# is used to model the physical residual induced by the predictor 
and the neglection of the pressure gradient term



Physical Corrector

• Generalise to a generic operator splitting scheme
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To “project” the errors induced by the predictor and the velocity 
field’s divergence in one shot 



Physical Corrector

• Model the residual
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- The residual can be modelled by PDEs
- Use generic linear combination of partial derivatives to model PDEs

𝒖! = .𝒖! + ∆𝑡ℛ%
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Physical Corrector

• Model the residual
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- The residual can be modelled by PDEs
- Use generic linear combination of partial derivatives to model PDEs

𝒖! = .𝒖! +𝚽 𝒖!#$, 1𝒖!



Physical Corrector

• Prediction-Correction Scheme

𝒖! = .𝒖! +𝚽 𝒖!#$, 1𝒖!
.𝒖! = Κ!⨀1𝒖! + (1 − Κ!)⨀𝒖!∗
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Experiment

• Training and validation on synthetic dataset



Experiment

• Synthetic Dataset Visual Results



Experiment

• Comparison between prediction-only and the corrected velocities 



Experiment

• Test on Real world Dataset Samples

Foam

Confetti



Experiment

• Real World Dataset



Experiment

• Real World Dataset



Thanks!


