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Negative Sampling (NS) Loss in Knowledge Graph Embedding (KGE)

In KGE, we commonly use the following loss functions:

• The original NS loss by Mikolov+ 2013

• The one used for KGE [Sun+ 2019, Ahrabian+ 2020]

Two types of loss functions
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In KGE, we commonly use the following loss functions:

• The original NS loss by Mikolov+ 2013

• The one used for KGE [Sun+ 2019, Ahrabian+ 2020]

Two types of loss functions

Comprehensive Analysis of Negative Sampling in Knowledge Graph Representation Learning 3

<latexit sha1_base64="PVRG6KgIrOxnpAkRmQ52iPTAH0s="></latexit>

� 1

|D|
X

(x,y)2D

h
log(�(s✓(x, y))) +

⌫X

yi⇠pn(y|x)

log(�(�s✓(x, yi)))
i

<latexit sha1_base64="fjmRWGRTW8qZ6CHrk8947uVOWy4="></latexit>

� 1

|D|
X

(x,y)2D

h
log(�(s✓(x, y) + �)) +

1

⌫

⌫X

yi⇠pn(y|x)

log(�(�s✓(x, yi)� �))
i

<latexit sha1_base64="VqVX/42T8Z7CZ9PqZXRXvXoZwLw="></latexit>

pn(y|x)
<latexit sha1_base64="oX3hpCHZUEfnf5frerPQ3JMDnCI="></latexit>

D = {(x1, y1), · · · , (xn, yn)}Observed data following : Noise distribution:
<latexit sha1_base64="eBZHiLh9WmK9EOy1Qh4uesKA+G0=">AAACdHichVHLSsNAFD2Nr1ofrboRdCEtFUUpExEVV0U3LvuwVbBSkjhqME1CMi3W0h9wLbjoSrGI+Blu/AEX/QRxqejGhTdpQVTUO8zMmTP33Dkzo9qG7grGWgGpq7unty/YHxoYHBoOR0ZG865VdjSe0yzDcrZVxeWGbvKc0IXBt22HKyXV4Fvq0bq3v1Xhjqtb5qao2ny3pByY+r6uKYKoYiTsFmsFcciFUp85nq/OFiMxlmB+TP0EcgfEktHC3FkrWU1ZkWsUsAcLGsoogcOEIGxAgUttBzIYbOJ2USPOIaT7+xx1hEhbpixOGQqxRzQe0Gqnw5q09mq6vlqjUwzqDimnEGcP7IY9s3t2yx7Z+6+1an4Nz0uVZrWt5XYxfDqefftXVaJZ4PBT9adngX2s+F518m77jHcLra2vnJw/Z1cz8do0u2RP5P+Ctdgd3cCsvGjNNM80EKIPkL8/90+QX0jIS4nFtBxLrqEdQUwgihl672UksYEUcv6fNHCFZuBVmpRiUrydKgU6mjF8CSnxAbHwkvw=</latexit>

s✓(x, y)Score function:

The two loss functions have the different terms

<latexit sha1_base64="Lk5AE5Y8MOHzkgMXk+BOLglEeeM="></latexit>

pd(x, y)

Number of negative samples: <latexit sha1_base64="u57JhqL14WCusF7Z+vWNhf83UWk="></latexit>⌫ Margin term:
<latexit sha1_base64="4/tXtigepcMCLsRcN0irNFaJ3u4="></latexit>�



Differences of the Two Loss Functions

The two NS loss functions have the following differences:
• The original NS loss does not have the margin term γ different from the NS loss in KGE.
• The NS loss in KGE has the normalization term 1/ν for the number of negative samples.

We investigated the differences to understand the characteristics of the two loss functions
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Our Theoretical Findings

Our theoretical findings:
1. Equivalence between the two loss functions
2. Effects of the Margin Term γ
3. Effects of the Number of Negative Samples ν
4. Relationship between the Margin Term γ and the Number of Negative Samples ν.
5. Relationship between the NS loss in KGE and Self-adversarial Negative Sampling (SANS) 

loss.
6. Subsampling for KGE
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Theoretical analysis

We show that the existence of ν and γ has no effect on the distribution that the model 
will fit when the NS loss reaches the optimal solution.
See Prop. 3.1 in our paper for the details.
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Theoretical analysis

We show that to make a distance-based scoring method capable to reach the optimal 
solution, we should tune γ in the NS loss used for KGE and ν in the original NS loss.
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3.2.1. VALUE RANGES OF SCORING METHODS

Distance-based scoring methods, such as TransE (Bordes
et al., 2013) and RotatE (Sun et al., 2019), have score func-
tions with a restricted value range. Distance-based scoring
methods are generally expressed using the p-norm as fol-
lows:

�||f✓(x, y)||p, (5)

where f✓(x, y) is a function that returns a vector value for
(x, y). From Eq. (5), when f✓(x, y) can represent any vec-
tor, the value range of a distance-based scoring method is
(�1, 0]. Due to the value range limitation, the following
proposition holds for distance-based scoring methods.
Proposition 3.2. In Eq. (3), the distance-based scoring
function cannot reach the optimal solution when there exists
(x, y) that satisfies exp(�)pn(y|x) < pd(y|x).

See Appendix A.2 for the proof. Since the value range
restriction causes this problem in Eq. (3), the smaller
exp(�)pn(y|x) than pd(y|x) is, the less able to approach
the optimal solution the distance-based scoring function is.
It is clear from Prop. 3.2 that we need to choose the noise
distribution and � appropriately when learning a distance-
based scoring method with the NS loss in Eq. (3). To satisfy
exp(�)pn(y|x) = pd(y|x) in the NS loss in Eq. (3), we can
simply set a sufficiently large �. Since uniform distribution
is generally used for pn(y|x) in KGE and pd(y|x) does not
exceed 1 from the definition of probability, exp(�) should
be larger than the number of labels |Y |. To make a distance-
based method capable to reach the optimal solution, it is
appropriate to use � satisfying

� = log(|Y |). (6)

Note that scoring methods with unlimited value ranges, such
as RESCAL (Bordes et al., 2011), ComplEx (Trouillon et al.,
2016), and DistMult (Yang et al., 2015) are not related to
the discussion of Prop. 3.2 and Eq. (6) that indicate the
importance of adjusting �.

3.2.2. GRADIENT CHANGES

From the discussion in §3.2.1, it seems that setting a large
value for � will facilitate the learning of the model without
facing any disadvantages. However, the following proposi-
tion shows that � cannot be set freely.
Proposition 3.3. The margin term � affects the gradient of
the NS loss in Eq. (3).

See Appendix A.3 for the proof. From Prop. 3.3, we can
see that when we change �, we also have to set the other
hyperparameters related to the gradient appropriately. Thus,
when using a distance-based scoring method, we need to set
a sufficiently large � and adjust the hyperparameters related
to the gradient appropriately.

3.3. Roles of the Number of Negative Samples ⌫

Next, we discuss the effect of ⌫ on learning from a theoreti-
cal perspective.

3.3.1. VALUE RANGES OF SCORING METHODS

Similar to Prop. 3.2, the following proposition holds:
Proposition 3.4. In Eq. (2), the distance-based scoring
function cannot reach the optimal solution when there exists
(x, y) that satisfies ⌫pn(y|x) < pd(y|x).

See Appendix A.2 for the proof. Similar to Prop. 3.2, in
Eq. (2), the smaller ⌫pn(y|x) than pd(y|x) is, the less able
to approach the optimal solution the distance-based scor-
ing function is. From Prop. 3.4, a distance-based scoring
method should satisfy the condition ⌫pn(y|x) = pd(y|x) to
reach the optimal solution in the NS loss of Eq. (2). When
using a uniform distribution for pn(y|x), then

⌫ = |Y |, (7)

must be satisfied. However, since the goal of the NS loss
is to reduce the computational cost by setting ⌫ < |Y |, this
condition would greatly degrade the advantage of the NS
loss in Eq. (2). Note that similar to �, the discussion of
Prop. 3.4 and Eq. (7) is not related to scoring methods that
have no limited value range.

3.3.2. GRADIENT CHANGES

Furthermore, we can induce the following proposition by
the Monte Carlo method on the basis of the law of large
numbers.
Proposition 3.5. When ⌫ is sufficiently large, ⌫ affects the
gradient of the NS loss in Eq. (2), whereas ⌫ does not affect
the gradient of the NS loss in Eq. (3).

See Appendix A.4 for the proof. When using the NS loss in
Eq. (3), if ⌫ is sufficiently large, it is unnecessary to tune ⌫ in
detail. However, for the NS loss in Eq. (2), when increasing
⌫ for distance-based scoring methods, it is necessary to
adjust hyperparameters related to the gradient.

3.4. Effects of Noise Distributions

Instead of uniform noise distributions, SANS presented
by Sun et al. (2019) uses the output of the training model as
the noise distribution for sampling negative entities. Though
it is difficult to apply the theoretical analysis conducted on
the loss functions in Eqs. (2) and (3) directly to SANS,
the Monte Carlo method on the basis of the law of large
numbers enables us to derive the following proposition.
Proposition 3.6. When ⌫ is sufficiently large, SANS be-
comes equivalent to the NS loss set to pn(y|x) = p✓(y|x)
in Eq. (3).

Distance-based scoring:
• Used in TransE and RotatE

However, scoring methods with unlimited value ranges, such as RESCAL, ComplEx, and 
DistMult are not related to the discussion.

See Props. 3.2, 3.3, 3.4, and 3.5 in our paper for the details.



Our Theoretical Findings

Our theoretical findings:
1. Equivalence between the two loss functions
2. Effects of the Margin Term γ
3. Effects of the Number of Negative Samples ν
4. Relationship between the Margin Term γ and the Number of Negative Samples ν.
5. Relationship between the NS loss for KGE and Self-adversarial Negative Sampling 

(SANS) loss.
6. Subsampling for KGE
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Theoretical analysis

We show that we can consider the SANS loss as the NS loss for KGE when ν
is enough large and                                .

See Prop. 3.6 in our paper for the details.
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relies on empirical hyperparameter tuning, which requires
a huge amount of computation time to consider various
combinations.

The nature of KG data also makes the NS loss in KGE
unique. Since a triplet, which is a training instance of KGE,
appears at most once in a KG, KGE learning suffers from
the serious data-sparseness problem. Subsampling has been
developed as a method for mitigating the data-sparseness
problem in word-representation learning. However, there
has been very little discussion on subsampling in KGE learn-
ing.

To address the aforementioned issues, we theoretically an-
alyzed the NS loss to assist hyperparameter tuning and
understand the better use of the NS loss in KGE learn-
ing. Our theoretical analysis showed that scoring methods
with restricted value ranges, such as TransE, RotatE, re-
quire appropriate adjustment of the margin term or num-
ber of negative samples different from those without re-
stricted value ranges, such as RESCAL, ComplEx, and
DistMult. We present novel subsampling methods spe-
cialized for the NS loss in KGE learning from a theoret-
ical perspective. Our empirical analysis on the FB15k-
237, WN18RR, and YAGO3-10 datasets showed that the
results of the models trained on the real-world datasets
agree with our theoretical findings. Our code is available at
https://github.com/kamigaito/icml2022.

2. NS Loss in KGE
In this section, we formulate KGE and explain the difference
between the original NS loss (Mikolov et al., 2013b) and
that used in KGE (Sun et al., 2019).

2.1. Formulation of KGE

We denote a triplet representing entities ei, ej and their
relation rk as (ei, rk, ej). In a typical KGC task, the model
receives a query (ei, rk, ?) or (?, rk, ej) and predicts the
entity corresponding to ?. Let the input query be x and
its answer entity be y. The probability p✓(y|x) that y is
predicted from x under the score function s✓(x, y) on the
basis of the model parameter ✓ is defined as follows using
the softmax function:

p✓(y|x) =
exp (s✓(x, y))P

y02Y exp (s✓(x, y0))
, (1)

where Y is the set of entities and the size |Y | can be large
in KGE learning.

2.2. NS Loss Functions

The softmax function can explicitly represent probabilities,
but the normalization term increases the learning time. For
this reason, the original NS loss was proposed as a method

to approximate the softmax function without normaliza-
tion during training (Mikolov et al., 2013b). For observ-
ables D = {(x1, y1), · · · , (xn, yn)} that follow pd(x, y),
the original NS loss is defined as

� 1

|D|
X

(x,y)2D

h
log(�(s✓(x, y)))

+
⌫X

yi⇠pn(yi|x)

log(�(�s✓(x, yi)))
i
, (2)

where pn(y|x) is the noise distribution, � is the sigmoid
function, and ⌫ is the number of negative samples per posi-
tive sample (x, y).

KGE uses the following NS loss (Sun et al., 2019; Ahrabian
et al., 2020) with the addition of the margin term � and
normalization term for ⌫ to Eq. (2):

� 1

|D|
X

(x,y)2D

h
log(�(s✓(x, y) + �))

+
1

⌫

⌫X

yi⇠pn(yi|x)

log(�(�s✓(x, yi)� �))
i
. (3)

Hereafter, we call Eq. (1) when the loss functions, such
as Eqs. (2) and (3), are minimized, which means s✓(x, y)
reaches an optimal solution, as the objective distribution. In
the next section, we discuss the difference between the two
loss functions.

3. Theoretical Analysis
3.1. Equivalence of the Two Loss Functions

By comparing Eq. (2) with Eq. (3), we can show the follow-
ing proposition.
Proposition 3.1. Eqs. (2) and (3) have the same objective
distribution:

pd(y|x)/pn(y|x)P
y02Y (pd(y0|x)/pn(y0|x))

. (4)

See Appendix A.1 for the proof. From Prop. 3.1, we can see
that the existence of ⌫ and � has no effect on the distribution
that the model will fit when the NS loss reaches the optimal
solution. However, if the score function does not have the
value range (�1,+1), the score limitation prevents a
model from reaching the optimal solution, and we need to
discuss this point.

3.2. Roles of the Margin Term �

In this section, we discuss the role of the margin term �
from a theoretical perspective.
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Based on Eq. (27), we can further reformulate Eq. (26) as follows:

(26) ⇡� 1

|D|
X
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h
log(�(s✓(x, y) + �)) +

X

yi

p✓(yi|x) log(�(�s✓(x, yi)� �))
i
. (28)

Since Eq. (28) is the same when pn(y|x) = p✓(y|x) in Eq. (22), we can understand that Prop. 3.6 holds.

B. The Detailed Derivation of Eq. (9)
We can reformulate the NS loss in Eq. (3) as follows:
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Here, we can consider the following approximation based on the Monte Carlo method:

1
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X

y
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Using Eq. (30), we can reformulate Eq. (29) as follows:
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Similr to Eq. (30), we can consider the following approximation by the the Monte Carlo method:
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Using Eq. (32), we can reformulate Eq. (31) as follows:
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Next, we consider replacements of pd(x, y) with p0d(x, y) and pd(x) with p0d(x). By assuming two functions, A(x, y) and
B(x), that convert pd(x, y) into p0d(x, y) and pd(x) into p0d(x), we further reformulate Eq. (33) as follows:

�
X
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h
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i
. (34)

Based on the similar derivation from Eq. (3) to Eq. (33), we can reformulate Eq. (34) as follows:

(34) ⇡ � 1

|D|
X

(x,y)2D

h
A(x, y) log(�(s✓(x, y) + �)) +

1

⌫

⌫X

yi⇠pn(yi|x)

B(x) log(�(�s✓(x, yi)� �))
i
. (35)
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See Appendix A.5 for the proof. Prop. 3.6 means that if
⌫ is sufficiently large, SANS can be treated as the NS loss
expressed in the same form as in Eq. (3). This enables us to
apply to SANS to what we have discussed for Eq. (3).

3.5. Subsampling for KGE

The discussion thus far has been on the assumption that the
NS loss function fits the model to the distribution pd(y|x)
defined from the observed data. However, what the NS
loss actually does is to fit the model to the true distribution
p0d(y|x) that exists behind the observed data. To fill in the
gap between pd(y|x) and p0d(y|x), we reformulate the NS
loss in Eq. (3) by the Monte Carlo method as

(3) ⇡ �
X

x,y

h
log(�(s✓(x, y) + �))pd(x, y)

+ pn(y|x) log(�(�s✓(x, y)� �))pd(x)
i
, (8)

and consider replacements of pd(x, y) with p0d(x, y) and
pd(x) with p0d(x). By assuming two functions, A(x, y) and
B(x), that convert pd(x, y) into p0d(x, y) and pd(x) into
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See Appendix B for the detailed derivation. Mikolov et al.
(2013b) proposed subsampling for the NS loss in Eq. (2) to
balance the appearance probability of words and word pairs
by discounting their frequency. In Eq. (2), we can consider
a word as x and a word pair as (x, y). We denote the ap-
pearance probability of x as pd(x) and (x, y) as pd(x, y) in
Eq. (9). Since A(x, y) and B(x) adjust pd(x, y) and pd(x)
in Eq. (9), we can understand that subsampling has the same
role with A(x, y) and B(x).

To the best of our knowledge, no paper discusses the use of
subsampling in KGE. However, Sun et al. (2019) used sub-
sampling which follows word2vec in their implementation1.
Regarding B(x) as B(x, y), we can understand that their
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subsampling fills the gap between pd(y|x) and p0d(y|x) in
Eq. (9) as follows:

A(x, y) = B(x, y) =
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(x0,y0)2D
1p

#(x0,y0)

. (10)

Here, # is the symbol for frequency, and #(x, y) represents
the frequency of (x, y). Note that the actual (x, y) occurs
at most once in the KG, so when (x, y) = (ei, rk, ej), they
approximate the frequency of (x, y) as follows:

#(x, y) ⇡ #(ei, rk) + #(rk, ej). (11)

We can interpret this approximation as the backoff (Katz,
1987) of #(x, y) to #(ei, rk) and #(rk, ej).

We derived our proposed KGE-specific subsampling meth-
ods from a theoretical perspective on the basis of Eq. (9)
that discounts by frequency as in Eq. (10). This derivation
depends on how we make assumptions about p0d(y|x). First,
the derivation is based on the assumption that in p0d(y|x),
(x, y) originally has a frequency, but the observed one is at
most 1. In this case, we cannot actually calculate the fre-
quency of #(x, y), as in Eq. (10). Thus, we need to use the
approximation in Eq. (11). Since A(x, y) needs to discount
the frequency of (x, y), and B(x) needs to discount that of
x, we can derive the following subsampling method:
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1p

#(x0,y0)

,
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In p0d(y|x), however, if we assume that (x, y) has fre-
quency 1 at most, as in the observation, then p0d(y|x) =
p0d(x, y)/p

0
d(x) / 1/p0d(x), so p0d(y|x) is the same for an x

independent from y. Therefore, under this assumption, we
only consider a discount for pd(x) and derive the following
subsampling method:

A(x, y) = B(x) =

1p
#xP

x02D
1p
#x0

. (13)

Although we derive our methods using Eqs. (12) and (13)
from a theoretical perspective, p0d(y|x), which is the target
of generalization in the actual task, varies depending on the
dataset. Therefore, we cannot discuss the superiority or infe-
riority of our subsampling methods only from a theoretical
perspective, and it is necessary to verify the methods using
the development data in actual use.

4. Empirical Analysis
We examined whether the theoretical analysis discussed in
§3 is valid for actual datasets and models.
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⌫ is sufficiently large, SANS can be treated as the NS loss
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#(x, y) ⇡ #(ei, rk) + #(rk, ej). (11)
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In p0d(y|x), however, if we assume that (x, y) has fre-
quency 1 at most, as in the observation, then p0d(y|x) =
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only consider a discount for pd(x) and derive the following
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Although we derive our methods using Eqs. (12) and (13)
from a theoretical perspective, p0d(y|x), which is the target
of generalization in the actual task, varies depending on the
dataset. Therefore, we cannot discuss the superiority or infe-
riority of our subsampling methods only from a theoretical
perspective, and it is necessary to verify the methods using
the development data in actual use.

4. Empirical Analysis
We examined whether the theoretical analysis discussed in
§3 is valid for actual datasets and models.
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subsampling in KGE. However, Sun et al. (2019) used sub-
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Here, # is the symbol for frequency, and #(x, y) represents
the frequency of (x, y). Note that the actual (x, y) occurs
at most once in the KG, so when (x, y) = (ei, rk, ej), they
approximate the frequency of (x, y) as follows:
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We can interpret this approximation as the backoff (Katz,
1987) of #(x, y) to #(ei, rk) and #(rk, ej).

We derived our proposed KGE-specific subsampling meth-
ods from a theoretical perspective on the basis of Eq. (9)
that discounts by frequency as in Eq. (10). This derivation
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most 1. In this case, we cannot actually calculate the fre-
quency of #(x, y), as in Eq. (10). Thus, we need to use the
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In p0d(y|x), however, if we assume that (x, y) has fre-
quency 1 at most, as in the observation, then p0d(y|x) =
p0d(x, y)/p

0
d(x) / 1/p0d(x), so p0d(y|x) is the same for an x

independent from y. Therefore, under this assumption, we
only consider a discount for pd(x) and derive the following
subsampling method:

A(x, y) = B(x) =

1p
#xP

x02D
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#x0

. (13)

Although we derive our methods using Eqs. (12) and (13)
from a theoretical perspective, p0d(y|x), which is the target
of generalization in the actual task, varies depending on the
dataset. Therefore, we cannot discuss the superiority or infe-
riority of our subsampling methods only from a theoretical
perspective, and it is necessary to verify the methods using
the development data in actual use.

4. Empirical Analysis
We examined whether the theoretical analysis discussed in
§3 is valid for actual datasets and models.

Frequency-based subsampling (Freq) Unique-based subsampling (Uniq)

The NS loss with subsumpling

To fill in the gap between the distribution of the observed data and a 
true distribution behind the data, we reformulate the NS loss by 
introducing functions A(x,y) and B(x) as follows:

See subsection 3.5 in our paper for the details.



Empirical Analysis

• We examined whether our theoretical is valid for actual datasets and models shown below.

• We confirmed that the observed Mean Reciprocal Ranks (MRRs) are along with our 
theoretical analysis.
• See section 4 in our paper for the details.
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Figure 1: MRR scores for each margin term � in each learning rate on FB15k-237 and WN18RR.

Table 1: Statistics for each dataset.

Dataset Entities Relations Tuples
Train Valid Test

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,182 37 1,079,040 4,978 4,982

Table 2: Scoring functions. d denotes a dimension size.

Model Score Function Parameters

RESCAL h|Mrt
h, t 2 Rd,
M 2 Rd⇥d

DistMult h|diag(r)t h, r, t 2 Rd

ComplEx Re(h|diag(r)t̄) h, r, t 2 Cd

TransE �||h+ r� t||p h, r, t 2 Rd

RotatE �||h � r� t||p h, r, t 2 Cd,|ri| = 1,

HAKE �||h � r� t||p h, t 2 Rd, r 2 Rd
+

��|| sin((h0 + r0 � t0)/2)||1 h0, r0, t0 2 [0, 2⇡)d,
� 2 R

4.1. Settings

Datasets We used FB15k-237 (Toutanova & Chen, 2015),
WN18RR, and YAGO3-10 (Dettmers et al., 2018) as the
datasets. Table 1 shows the statistics for each dataset.

Models We chose RESCAL, ComplEx, DistMult, TransE,
RotatE, and HAKE (Zhang et al., 2020) for our experiments.
Table 2 shows the scoring functions for each model. From
the table, we can see that the value range of RESCAL, Com-
plEx, and DistMult is (�1,1), whereas that of TransE
and RotatE is (�1, 0]. HAKE’s value range is close to
(�1,1) when � is close to �1, whereas it is close to
(�1, 0] when � is close to 0. Since � is initialized near 0, a
large learning rate is required to make � close to �1. Thus,
we can expect that HAKE pretends like TransE and RotatE

in a small learning rate.

Implementation & Hyperparameters We used the im-
plementations and hyperparameters reported by Sun et al.
(2019)2 for ComplEx, DistMult, TransE, and RotatE and
the one reported by Zhang et al. (2020)3 for HAKE in our
experiments unless otherwise noted in the next subsections.
We implemented RESCAL by modifying DistMult by ba-
sically inheriting the original hyperparameters. We chose
uniform noise as pn(y|x) for the NS loss in Eqs. (2) and (3).
We also applied SANS for model training. We used Adam
(Kingma & Ba, 2015) as our optimizer.

4.2. Effects of the Margin Term �

To investigate the performance when changing �, we com-
pared the mean reciprocal rank (MRR). We first examined
whether the theoretical conclusion that � is necessary to
properly learn p-norm-based scoring methods as discussed
in §3.2 is also valid in practice.

Settings For this investigation, we compared the MRRs of
the models introduced in §4.1 on FB15k-237 and WN18RR.
We chose the NS loss in Eq. (3) with uniform noise
and the SANS loss to train the models. We chose mar-
gin term � from {0.0, 3.0, 6.0, 9.0, 9.58} on FB15k-237
and {0.0, 2.0, 4.0, 6.0, 10.62} on WN18RR for each initial
learning rate in {e� 2, e� 3, 5e� 5}. Note that we decided
the set for margin values on the basis of previous studies
(Sun et al., 2019; Zhang et al., 2020) and Eq. (6). We list
the detailed hyperparameters for each model in Appendix
C.1.

2
https://github.com/DeepGraphLearning/

KnowledgeGraphEmbedding

3
https://github.com/zyjcs/KGE-HAE
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HAKE �||h � r� t||p h, t 2 Rd, r 2 Rd
+

��|| sin((h0 + r0 � t0)/2)||1 h0, r0, t0 2 [0, 2⇡)d,
� 2 R

4.1. Settings

Datasets We used FB15k-237 (Toutanova & Chen, 2015),
WN18RR, and YAGO3-10 (Dettmers et al., 2018) as the
datasets. Table 1 shows the statistics for each dataset.

Models We chose RESCAL, ComplEx, DistMult, TransE,
RotatE, and HAKE (Zhang et al., 2020) for our experiments.
Table 2 shows the scoring functions for each model. From
the table, we can see that the value range of RESCAL, Com-
plEx, and DistMult is (�1,1), whereas that of TransE
and RotatE is (�1, 0]. HAKE’s value range is close to
(�1,1) when � is close to �1, whereas it is close to
(�1, 0] when � is close to 0. Since � is initialized near 0, a
large learning rate is required to make � close to �1. Thus,
we can expect that HAKE pretends like TransE and RotatE

in a small learning rate.

Implementation & Hyperparameters We used the im-
plementations and hyperparameters reported by Sun et al.
(2019)2 for ComplEx, DistMult, TransE, and RotatE and
the one reported by Zhang et al. (2020)3 for HAKE in our
experiments unless otherwise noted in the next subsections.
We implemented RESCAL by modifying DistMult by ba-
sically inheriting the original hyperparameters. We chose
uniform noise as pn(y|x) for the NS loss in Eqs. (2) and (3).
We also applied SANS for model training. We used Adam
(Kingma & Ba, 2015) as our optimizer.

4.2. Effects of the Margin Term �

To investigate the performance when changing �, we com-
pared the mean reciprocal rank (MRR). We first examined
whether the theoretical conclusion that � is necessary to
properly learn p-norm-based scoring methods as discussed
in §3.2 is also valid in practice.

Settings For this investigation, we compared the MRRs of
the models introduced in §4.1 on FB15k-237 and WN18RR.
We chose the NS loss in Eq. (3) with uniform noise
and the SANS loss to train the models. We chose mar-
gin term � from {0.0, 3.0, 6.0, 9.0, 9.58} on FB15k-237
and {0.0, 2.0, 4.0, 6.0, 10.62} on WN18RR for each initial
learning rate in {e� 2, e� 3, 5e� 5}. Note that we decided
the set for margin values on the basis of previous studies
(Sun et al., 2019; Zhang et al., 2020) and Eq. (6). We list
the detailed hyperparameters for each model in Appendix
C.1.

2
https://github.com/DeepGraphLearning/

KnowledgeGraphEmbedding

3
https://github.com/zyjcs/KGE-HAE

Datasets Models



Conclusion

• We conducted a theoretical analysis for the NS loss used in KGE learning and derived 
theoretical facts.
• The experimental results indicate that the theoretical facts we derived are also observed in 

the real-world datasets. 
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Our analysis


