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Central question:
Can we use more information about
                          to get an even stronger
improvement than GPI?

A motivating problem: Transfer

Evaluate certain non-Markov behaviours that
switch amongst                             within episodes, 
without any additional learning.

Guarantee:

Core ideas:

Strengthen GPI to improve over these
non-Markov behaviours too.

In this case, GPI produces
optimal behaviour only at
nearby states.

New goal location indicated.

Quickly derive improved policy
for new task.
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Switching times are geometrically distributed.

A geometric switching policy (GSP) 

Geometric generalised policy improvement 
(GGPI)

Base 
policies

Set of 
GSPs

Guarantee: In order to implement, need a way of
estimating GSP values                    for new reward 
functions, without requiring further learning.as long as closure condition on       holds (see paper)
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Geometric horizon models
(also     -models (Janner et al., 2020),      -models (Sutton, 1995))

For policy      and discount      , a geometric 
horizon model (GHM)          is a generative model 
for the corresponding discounted visitation 
distributions.

Environment rollout

GHM sampling
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Compose these models to evaluate GSPs (extending Markov results from Janner et al. (2020))

Takeaway: Composing GHMs allows us to evaluate GSPs without further learning.

Proposition
This is an unbiased estimate of the value                   of the GSP                                           , where                     .

Aim: Evaluate
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Theorem: Almost-sure convergence to         in tabular setting (under appropriate conditions).

MLE with a bootstrapped target distribution.
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Algorithm:

Observe transition
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(Todorov, 2012)

MuJoCo (Todorov, 2012) Ant, with pre-trained policies to move up/right/down/left.

Test time: Each episode, new target location revealed via reward function.
Goal: Reach target without any additional learning.

Representative
episodes

GPI (baseline) Depth-2 GGPI

GHM samples

Overall results
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Geometric switching times are key to the theory in this work.

Extensions of GHMs that do not need to model full agent state.

Potentially exponential number of GSPs to consider.
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