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What is typically reported when presenting new Offline-RL algorithms?
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What is typically reported when presenting new Offline-RL algorithms?
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What is typically reported when comparing new Offline-RL algorithms?
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= In some problems, it is not feasible to deploy all policies online


https://emojipedia.org/crying-face/

= In some problems, it is not feasible to deploy all policies online

- But it is feasible to deploy more than one policy!



https://emojipedia.org/crying-face/

= In some problems, it is not feasible to deploy all policies online

- But it is feasible to deploy more than one policy!

=) So which algorithm should we prefer, if we are restricted to
evaluate no more than N policies online?


https://emojipedia.org/crying-face/
https://emojipedia.org/thinking-face/#:~:text=A%20yellow%20face%20with%20furrowed,pondering%20or%20deep%20in%20thought.&text=Thinking%20Face%20was%20approved%20as,to%20Emoji%201.0%20in%202015.
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NLP to Offline-RL

Expected Online Performance
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Target Performance

(Performance Relative to the Best Behavioral Policy)

Online Budget

(Number of policies evaluated online)

Offline Policy Selection strategy

(Uniform Selection for an Efficient Estimator)
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Expected Online Performance

EOP: Different algorithms are preferred under varied budgets
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Expected Online Performance

EOP: How many policies to deploy for a satisfactory performance?
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Expected Online Performance

Can we apply EOP to already existing benchmarks?
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EOP: Compare Offline Policy Selection methods
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Figure 2: Expected Online Performance under different offline policy selection methods. In most cases, the resulting curves are
hardly distinguishable, suggesting that uniform selection should not be overlooked in research reports and practitioner toolsets.
The shaded area represents one standard deviation.
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Future Work

- Adapt for risk-sensitive scenarios

- Estimator for OPS methods beyond
uniform strategy
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