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Transformer and GNN

» Fully-connection

Weights a;; are generated

dynamically with attention
mechanism
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Graph Views of Transformers
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Self-attention as Complete Graph

e Complexity : ©(N?)

* Reduce complexity ----> Reduce the
number of edges
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Star-Transformer

* Reduce Complexity to ®(N).

* Preserve the capacity to capture
both local composition and long-
range dependency.

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, Zheng Zhang. Star-Transformer, NAACL 2019,
https://arxiv.org/pdf/1902.09113.pdf

Fudan NLP Lab



Star-Transformer

Layer Input

Update Satellite
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Empirical Sparse Transformers

q q q q

(a) Star-Transformer (b) Longformer (c) ETC (d) BigBird

Lin, T., Wang, Y., Liu, X., and Qiu, X. A survey of transformers, 2021
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Sparse Transformer: A Graph View

"

* Which property is important for those graphs serving as
ground for self-attention?

* How dense do we need the graph to be in order to reduce
complexity and at the same time remain performance?
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Two views of a graph

» Computational Complexity (CC)

» Computational Complexity is the computation complexity required to allow the model
to grab all interactions among tokens when using graph G for self-attention.

» For complete graph, it's N.

» Information Payload (IP)

» Information Payload. measuring how much information a graph can transfer when
allowing the model to grab all interactions among tokens.

» For complete graph, it's ﬁ
» To better compare information transfer on different graphs, we define the
Normalized Information Payload (NIP)

IP(G)

NIP(G) = SO
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Computational Complexity

» Given a G-attention layer, to make the whole model grab all interactions among tokens, we
need to stack k(G) G-attention layers.

» Straightforwardly, k(G) is the diameter of graph G.
» For complete graph, it’s 1.
» p(G)

» For one G-attention layer, when the input sequence is fixed at length N, the Computational
Complexity for one layer is proportional to the mean degree of G, which we denote by

p(G).

., N-1
» For complete graph, it's —

CC(G) := p(G) x K(G).
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Information Payload
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Definition 2.2. For one path P, € Py, the Information
Payload of one path P,,, denoted by R(F,;) , is defined as

R(Pa) = ] !

deqg(v)
veP,, & v#a j( )

Definition 2.3. The Information Payload between node pair

(a,b), denoted by I, is sum of Information Payload of all
paths that belong to Py :

Iap = Z ‘R(j)u.h}-

Pab €Pay




Closely related to Random Walk

Theorem 2.4. Information Payload between two nodes 1,
equals to the probability of a random walk starts from node
b that ends in node a at step len(Pyy).

L; Li—q
€
ele
€

Attention forward Random walk
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Information Payload
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Definition 2.5. The Information Payload for a graph ¢
IP(G) is the smallest Information Payload I,;, between node
pairs (a, b) whose distance is the diameter of the graph. Let
A be the set of node pairs whose distance is the diameter of
the graph, we have

IP(G) := min Ig. (5)
(a,b)eA




Normalized Information Payload (NIP)

Table I. Normalized Information Payload for commonly used graphs, where w 1s the number of neighbors in ring lattice. x: © (i) after

refinement.
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How to design sparse graph with high NIP

» Complete graph : the shortest distance between two neighbors’
neighbors (excluding two nodes themselves) equals to zero, meaning
that every two neighbor has the same neighbor.

» Unknown graph: the shortest distance between two neighbors’
neighbors (excluding two nodes themselves) equals to one. Much sparser
while maintaining the connectivity of the graph.

» This Unknown graph is Hypercube.
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Normalized Information Payload (NIP)

Table 1. Normalized Information Payload for commonly used graphs, where w 1s the number of neighbors in ring lattice. x: © (i) after

NZ
refinement.
Type of graph CC(G) | IP(G) T NIP(G) T
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Normalized Information Payload (NIP)

Table 1. Normalized Information Payload for commonly used graphs, where w is the number of neighbors in ring lattice. x: © (

refinement.
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Figure 2. NIP((7) for graphs divided by complete graph in Table 1.

We do not include star graph and ring lattice in this Figure because
Nll’((,) for star graph is too large. The w used for ring lattice is
set to {¢ dLLOde“ to Longformer at length 4096.
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Hypercube Transformer mapping

she stood she stood in tears she stood in tears she stood in tears dllll(l th(‘ alu‘n cron \lu‘ stood in tears amid the alien cron
0 1 0 1 1 00 10 11 01 00 10 11 01 11 1 00 100 110 010 011 111 101 001

(a) N =2 (b)N = 4 (c)N=8

Figure 4. Iteratively mapping a sequence to a hypercube and its attention mask. Figure (a), (b) and (c) is the attention map for input
sequences with length N = 2,4, 8 respectively.
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Long-Range-Arena

Table 2. Performances for different graphs on Long-Range Arena. * means after refinement.

Graph ListOps Text Retrieval Image Pathfinder Avg. NIP((G7) SpeedUp
#lLength 2K 4K 4K IK K

Complete 37.20 63.54 81.00 47.23 74.39  60.67 1 x 1 x
Star 37.58 63.37 7971 52,19 6692 5995 lx* -
Ring lattice + E-R random 36.44 63.81 80.17 5088 67.14 59.69 1.43¢ '"x -
Ring lattice + Star (Longformer) 3755 61.12 8053 5213  68.66 60.00 8.25¢ ?%x -
Ring lattice + Star + E-R random (BigBird) 37.80 62.34 79.49  52.87 67.44 5999 7.2le *x -
Hypercube 3748 63.79 81.16 53.79 74.12 62.07 4.85x 15.8 %
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Long-Range-Arena

Table 2. 1

Graph
#lLength

Complete

Star

Ring lattice + E-R randoi
Ring lattice + Star (Long
Ring lattice + Star + E-R

Hypercube
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Figure 6. Average performance on the LRA benchmark can have
strong proposition with our proposed Normalized Information
Payload.

efinement.
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Block Sparsity

Theorem 3.1. For block size b < % larger block size makes
star graph and hypercube have less Normalized Information

Payload.

Table 3. Performance of Hypercube Transformer with different

block sizes.
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Hypercube Retrieval Image
Block size 16 81.16 53.79
Block size 32 80.74 51.98
Block size 64 80.75 50.75




Large-scale pretraining

Table 5. Finetuning MLM on Wikitext103.

Model Loss Speedup
BERT 928 1.18 1x
CubeBERT128  1.05 1.4

5 T
—— BERT 5
CubeBERT 54

Eval Loss
o

(3]

0 5000 10000 15000 35000 40000

20000 25000 30000
Steps

Figure 7. CubeBERT 28 shows faster dropping rate of eval loss
than BERT 128 when finetuning on Wikitext103.
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Large-scale pretraining

Table 5. Finetuning MLM on Wikitext103.

Model Loss Speedup

Table 6. Performances on GLUE test sets. For our implementation, results for RTE, STS and MRPC are reported by first finetuning on the
MNLI model instead of the baseline pretrained model.

MNLI-m/mm QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg. Speedup
#metric Acc Acc  F1 Acc Acc F1 ~ Matthew’s corr. Spearman corr.
#Examples 393k 105k 364k 2.5k 67k 3.7k 8.5k 7k
BERT 86.0/85.2 926 720 783 945 899 60.9 87.5 83.0 1 x
BERT 125 84.9/84.8 91.1 71.0 76.6 93.1 904 58.0 88.3 82.0 1 x
CubeBERT 28  85.9/85.0 90.8 71.3 77.1 953 864 61.5 87.6 82.3 1.1x

0 5000 10000 15000 20000 25000 30000 35000 40000
Steps

|
11

Figure 7. CubeBERT 28 shows faster dropping rate of eval loss
than BERT 128 when finetuning on Wikitext103.
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Open Questions

» How to quantify the Information Interference of one node? (Refinement of Star
Graph)
» Expander Graph

» Cheeger Inequalities to bound edge expansion. The lower bound is achieved for the
hypercube (best NIP so far), the upper bound is achieved for a cycle (worst NIP so far).

L(d— ) \/2dd A2).

» Attention weights change with training, making the distribution not uniform.
How to model the distribution of attention weights?

» However, from analysis of BERT, some attention heads, especially in lower layers, have
very broad attention, which means the uniform distribution assumption reasonable
somehow.
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Thank you for listening!
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