
What Dense Graph Do You Need for Self-attention?

Yuxin Wang (Speaker), Chu-Tak Lee ,Qipeng Guo,  Zhangyue Yin , 
Yunhua Zhou,

Xuanjing Huang , Xipeng Qiu

Fudan University



2Fudan NLP Lab

Transformer and GNN

 Transformer is a model built with self-attention module.

 Fully-connection

Weights 𝛼𝑖𝑗 are generated 

dynamically with attention 
mechanism
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Graph Views of Transformers

 Transformer is a model built with self-attention module.
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Contents
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• Normalized Information Payload(NIP)

• Hypercube Transformer

• Experiments
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Self-attention as Complete Graph

• Complexity : Θ(N2)

• Reduce complexity ----> Reduce the 
number of edges
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Star-Transformer

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, Zheng Zhang. Star-Transformer, NAACL 2019, 

https://arxiv.org/pdf/1902.09113.pdf

• Reduce Complexity to Θ(N).

• Preserve the capacity to capture 
both local composition and long-
range dependency.
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Star-Transformer
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Empirical Sparse Transformers

Lin, T., Wang, Y., Liu, X., and Qiu, X. A survey of transformers, 2021
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Sparse Transformer: A Graph View

• Which property is important for those graphs serving as 
ground for self-attention? 

• How dense do we need the graph to be in order to reduce 
complexity and at the same time remain performance?



10Fudan NLP Lab

Contents

• Sparsification of self-attention

• Normalized Information Payload(NIP)

• Hypercube Transformer

• Experiments



11Fudan NLP Lab

Two views of a graph

 Computational Complexity (CC)

 Computational Complexity is the computation complexity required to allow the model 

to grab all interactions among tokens when using graph G for self-attention.

 For complete graph, it’s N.

 Information Payload (IP)

 Information Payload. measuring how much information a graph can transfer when 

allowing the model to grab all interactions among tokens.

 For complete graph, it’s 
1

𝑁−1
.

 To better compare information transfer on different graphs, we define the 
Normalized Information Payload (NIP)
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Computational Complexity

 κ(G)

 Given a G-attention layer, to make the whole model grab all interactions among tokens, we 
need to stack κ(G) G-attention layers.

 Straightforwardly, κ(G) is the diameter of graph G. 

 For complete graph, it’s 1.

 ρ(G)

 For one G-attention layer, when the input sequence is fixed at length N, the Computational 
Complexity for one layer is proportional to the mean degree of G, which we denote by 
ρ(G).

 For complete graph, it’s 
𝑁−1

2
.
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Information Payload
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Closely related to Random Walk

Attention forward Random walk
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Information Payload
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Normalized Information Payload (NIP)
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How to design sparse graph with high NIP

 Complete graph : the shortest distance between two neighbors’ 
neighbors (excluding two nodes themselves) equals to zero, meaning 
that every two neighbor has the same neighbor.

 Unknown graph: the shortest distance between two neighbors’ 
neighbors (excluding two nodes themselves) equals to one. Much sparser 
while maintaining the connectivity of the graph.

 This Unknown graph is Hypercube.
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Normalized Information Payload (NIP)
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Normalized Information Payload (NIP)
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Hypercube Transformer mapping
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Long-Range-Arena
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Long-Range-Arena
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Block Sparsity
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Large-scale pretraining
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Large-scale pretraining
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Open Questions

 How to quantify the Information Interference of one node? (Refinement of Star 
Graph)

 Expander Graph

 Cheeger Inequalities to bound edge expansion. The lower bound is achieved for the 
hypercube (best NIP so far), the upper bound is achieved for a cycle (worst NIP so far). 

 Attention weights change with training, making the distribution not uniform. 
How to model the distribution of attention weights?

 However, from analysis of BERT, some attention heads, especially in lower layers, have 
very broad attention, which means the uniform distribution assumption reasonable 
somehow.
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Thank you for listening!


